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Overview

a) Two-fluid model for Helium II

b) Motivations for numerical modelization

c) Existing 1-D, 2-D and 3-D numerical simulations

d) Governing equations using P, vn, vs and T variables

e) Computing stage

f) Conclusion
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Two-fluid model for Helium II
The Superfluid fraction: 

Atoms that have undergone BE condensation 

Finite density, but NO viscosity, carry NO entropy 

irrotational behavior for an inviscid fluid

vortices can be generated
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Motivations for numerical modelization

The knowledge of cooling characteristics of He II is indispensable 
to design superconducting magnets !

Few examples of applications (see introduction talks):

Thermal counter-flow / Tatsumoto
Fundamental understanding of 2-fluid flow

Determination of the Critical Heat Flux / Yoshikawa, Shirai
Supraconductor cooling

Particle Image Velocimetry technique / Zhang, Fuzier, van Sciver
Effect of Normal and superfluid component

2nd Sound / NHMFL, Fuzier, van Sciver
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Thermal counter-flow / Tatsumoto

“Numerical analysis for steady-state two-dimensional 
heat transfer from a flat plate at one side of a duct 
containing pressurized He II”
By H. Tatsumoto, K. Fukuda b, M. Shiotsu

Continuity and momentum balances conservation > P
Energy balance conservation Lax algorithm >T
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Determination of Critical Heat Flux / Yoshikawa, Shirai

“Experiments and 3-D numerical analyses for 
heat transfer from a flat plate in a duct with 
contractions filled with liquid He II”
By Yoshikawa K., Shirai Y., Shiotsu M., Hama K.
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Static and Forced-flow in He II

“Experimental measurement and modeling of transient heat transfer in forced flow of He II 
at high velocities” by S. Fuzier, S.W Van Sciver

Second sound + Modelization of forced convection + counter-flow + pressure effect
Forced flow up to 22 m/s
Use of high non-linear effective thermal conductivity : keff and Fanning friction factor
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Probing the microscopic scale of He II

Particle Image Velocimetry technique: 
- permit 2-D and 3-D flow visualization
- capable to follow the normal velocity, vn

NHMFL measured internal convection phenomena
Challenges: Particle choices (density, size)

Need numerical simulation to better understand what happen 
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velocity correction

Interaction with superfluid component?

Figure 17 Optical cryostat with PIV setup
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Rao et al. : Forced convection – Steady state and transient (vertical micron-wide GM duct heated 
at the bottom)

• Method:Finite difference algorithm; 4th order Runge-Kutta, explicit in time

• Variables: Pressure, temperature, normal velocity at BC

• Assumptions: Two-fluid model and the simplified model [Kashani]

• Result: Good agreement of both methods with experimental results by Ramada

Existing 1-D Numerical Simulations
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Bottura et al. : THEA - Simulation of quench propagation

• Method: Finite element algorithm, Taylor-Galerkin, explicit in time

• Variables: Pressure, temperature, velocity 

• Assumptions: Use a single-fluid model; add couterflow heat exchange in the energy 
conservation balance to benchmark

• Result: Good agreement with experimental results by Srinivasan and Hofmann, Kashani et 
al., Lottin and van Sciver
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Ramadan and Witt: Compared single-fluid and two-fluid models (natural conv. in large He II baths)

• Variables: Pressure, temperature, velocity 

• Assumptions: Ignore the thermomechanical effect term and the Gorter-Mellink mutual 
friction term in the momentum equations for both components

• Result: Illustrate the weakness of the single-fluid model

Tatsumoto: SUPER-2D–Steady state and transient (rectangular duct with varying ratio of heated surface)

• Method: Finite difference, First order upwind scheme, explicit in time 

• Variables: Pressure, temperature, heat flux

• Assumptions: Two-fluid model and the energy dissipation based on the mutual friction 
between the superfluid and normal-fluid components

• Result: Predict the steady state critical heat flux to a precision of about 9 %

Existing 2-D Numerical Simulations
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Doi, Shirai, Shiotsu, Yoshikawa – Kyoto : SUPER-3-D, Steady state

[1] “3-D numerical analyses for heat transfer from a flat plate in a duct with contractions filled with pressurized He II”.
[2] “Experiments and 3-D numerical analyses for HT from a flat plate in a duct with contractions filled with liquid He II”.
(duct w/ 1 and 2 contractions calculation of Critical Heat Flux)

• Method: Finite difference, First order upwind scheme, explicit in time 

Energy balance -> s ->T

Adams-Bashforth method -> vs -> v ->vn

Variables: Pressure, temperature, heat flux , dt=0.5 μsec [1] and dt=2 μsec [2]

• Assumptions: Two-fluid model and the energy dissipation based on the mutual friction 
between the superfluid and normal-fluid components

• Result: Predict (wrt experiment) the steady state CHF to a precision of about 14 %

• Large memory and time (Parallelized computation using Message passing Interface - MPI)

We proposed a different set of equation to ease the calculation of 1-D, 2-D and 3-D 
structures.

Existing 3-D Numerical Simulations
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1. Formulate new and complete Helium II approximations based on the two-fluid model 
and the theory of GM mutual friction using p, T, vn and vs as variables

Mass, momentum and energy balances conservations permit to derive a partial 
differential equation (PDE) system of the form:

2. Construct a numerical 1-D then 3-D solver for Helium II based on existing PDE solver
Calculate shape functions, associated local and global derivatives, jacobian matrix and 
determinant of 3-D FE (cubic, tetrahedral and wedge)

Implement the new formulations in 1-D PDE solver for space and time discretization

Add and modify library for 3-D matrix and vector operations 

Implement a protocol to identify nodes where algebraic and boundary conditions can be 
imposed

Proposal - PDE (p,vn,vs,T)

m ∂u
∂t

+ a ∇ ⋅ u + ∇ ⋅ g ∇ ⋅ u( )+ s u = q
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Governing equations for the two-fluid model

Momentum density of He II : ρv = ρnvn + ρsvs

Density of He II: ρ = ρn + ρs

w = vn − vsRelative velocity:

Thermodynamic potential, Φ :

τ = −η ∇2vn +
1
3
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Governing equations – Eq. I  and Eq. II

∂ρ
∂t

+ ∇ ⋅ ρv( )= 0
∂ρn

∂t
+ ∇ ⋅ ρnvn( )= m ∂ρs

∂t
+ ∇ ⋅ ρsvs( )= −m

where m is the rate at which normal fluid is created from superfluid

Equation I- Continuity equation & mass balance conservation for normal fluid and superfluid:

where g is the acceleration of the gravity field

( ) ( ) gvvvvvv ρτρρ
∂

ρρ∂
+⋅−∇=∇++⋅∇+

+ p
t sssnnn

ssnn

Momentum equation for superfluid [Donnelly] ρs
∂vs

∂t
+ ρsvs∇ ⋅ vs + ∇Φ = Ft + ρsg

Equation II and Equation III- Momentum equations

Force associated with turbulence that appears only when the relative velocity 
between the superfluid and normal fluid components is larger than a critical value

Force of mutual friction is given by GM for counterflow situation
where AGM is a function of T and, possibly, of w

wF 2wA nsGMt ρρ=

Ft = Lo ⋅ f =
ρn

2

ρρs
2 ηnρsρnw

2w
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ρs
∂vs

∂t
+ ρsvs∇ ⋅ vs +

ρs

ρ
∇p − ρss∇T −

ρsρn

2ρ
∇w 2 = Ft + ρsg

ρn
∂vn

∂t
+ ρnvn∇ ⋅ vn +

ρn

ρ
∇p + ρss∇T +

ρsρn

2ρ
∇w 2 = −∇ ⋅ τ − Ft + ρng − mw

Momentum balance conservation – Eq. II & Eq. III

Momentum equation for the normal fluid  becomes:

Momentum equation for the superfluid becomes:
mass exchange

force due to 
pressure gradient

acceleration 
terms

thermo-mechanical 
effect
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Energy balance conservation – Eq. IV

ρ ∂i
∂t

+ ρv∇ ⋅ i + p∇v + T∇ρssw + w 2 ∇
ρsρn

2ρ
w −

m
2
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⎠ 
⎟ − Ftw − ∇ ⋅ k ∇T( )= −τ ⋅ ∇ ⋅ vn + q

internal heat convection through 
entropy transport 

represents the internal energy dissipation 
associated with turbulence, see later…

originates from the transformation of superfluid into 
normal fluid and vice versa

Equation IV - Internal energy conservation :
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- Energy dissipated by viscous dissipation is small compared to other sources of heat 
transport (e.g. mutual friction) -> treated as a source perturbation

Substitutions and assumptions

- Friction force is given by GM for counterflow situation: wF 2wA nsGMt ρρ=

- The divergence of the total velocity is computed through the chain relation:

Note that the normal and superfluid velocities appear explicitly

∇ ⋅ v = ∇ ⋅
ρn

ρ
vn +

ρs

ρ
vs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

ρn

ρ
∇ ⋅ vn +

ρs

ρ
∇ ⋅ vs + vn∇

ρn

ρ
+ vs∇

ρs

ρ

- Contributions related explicitly to the mass exchange m are small when 
compared to other terms -> drop them from the balances

φ∇ k∇T( ) ≈ ∇ φk∇T( )

where AGM is a function of T and, possibly, of w

- Terms containing differentials of quantities other than variables (p, vn, vs, T)   
perturbations with respect to the leading terms of the equations

- Variations of the Gruneisen parameter are small
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PDE (p,vn,vs,T) form – Continuity & Energy (Eq. I & IV)
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PDE (p,vn,vs,T) form – Momentum (Eq. II & III)

ρn
∂vn

∂t
+

ρn

ρ
∇p + ρnvn∇ ⋅ vn +

ρsρn

ρ
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viscous effect
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force due 
to variation 
of pressure

acc. 
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THEA: commercial code by CryoSoft, 1-D Thermal, Hydraulic and Electric Analysis of 
superconducting cables

use parts of THEA capable of solving generic partial differential equations in a 1-D system 
of the form

Numerical Formulations and THEA

( ) qusuguaum =+⋅∇⋅∇+⋅∇+
t∂

∂

mass matrix advection matrix
diffusion matrix source matrix

forcing vector

Ω∇= ∫
Ω
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J

IIJ Ω= ∫
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dNsNS JIJ
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QUSGA
t
UM =−++ )(
∂
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Ω= ∫
Ω

dNmNM JIJ
J

IIJ
Ω

Ω

dNgNG JIJ
J

IIJ ∇∇= ∫

Write the PDE system as a 
weighted residual at the nodes 
with identical weight and shape 
functions to obtain the system of 
ODE with discretized matrices

Ω
Ω

dqNQ J
J

JJ ∫∇=

where
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Computing phase

Fortran 77

Submit jobs to Fermilab Farm using CONDOR 

Submit jobs to the GRID 

Advantages:

User defined environment

Submit jobs in parallel

Inconvenient:

Difficult process to investigate the code instabilities !

Need to use Linux (dual boot machine) or Cygwin

Interactive graphical data analysis programs: PAW

Visualization means are limited: Tecplot

Not User friendly at all !
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We first consider a scalar problem with one degree of freedom (Temperature) in 
a 3-D space (see topologies) 

This problem is a typical parabolic equation in time, in the 3-D space and can be 
tested against analytic results of a 1-D problem

Verification of the 3-D code on a scalar problem
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Some results using THEA - PDESolver

“PIV Measurements of He II 
Counterflow Around a Cylinder”
By S. Fuzier, S. W. Van Sciver, and T. 
Zhang

FIGURE 1. Turbulent structures for D = 6.35 mm. 
T = 2.03 K and q = 7.2 kW/m2 , νn = 23 mm/s and

Preliminary results:

Preliminary results:
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Computing Using COMSOL - example
2-D Simulation using asymmetric conditions - Application modes  

•Weakly compressible NS vn, P

•Convection and conduction T

•Weakly compressible NS vs, P

Advantages:

Very user friendly !

Possibility to modify governing equation

Add coupling between variables

Use integrated numerical stabilization for normal fluid

Schemes are helpful to stabilize the solution without changing the 
solution too much Artificial diffusion (overdamping)

Inconvenient of Physical parameterization:

Adapt the governing equation for the superfluid behavior

Viscosity = 0 instability ; work with artificial diffusion
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Using COMSOL                                                  

Based on Tatsumoto’s example
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Using COMSOL - Based on NHMFL’s example

Normal component velocity
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New materials: 
o A new set of equation to validate 
o COMSOL or others to validate this PDE

Remains opened questions in Superfluid Helium behavior Physics:
• PIV: factor 2 between theoretical and numerical model
• S. Fuzier’s model to understand: issue with medium range ~ 8 m/s

coefficient
Question: how to better understand the phenomenology of 2-fluid flow
One answer: by simulation approach

Challenges: 
o Add coupling, which can introduces inherent physical stabilisation.. 
o Non-linearity of superfluid component

Keys to successful numerical simulations:
o limit the computing time and complexity: CPU used
o Use a user friendly visualization tool

Conclusion
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Extra – slide : Using COMSOL
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Extra – slide : Helium II – PDE simplification
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PDE system to solve

Vector of unknowns:

and preliminary simplification
To implement in the code


