Cryogenic Safety Aspect of the Low-\(\beta\) Magnet Systems at the LHC

Christine Darve

July 21st, 2010

Headlines:

The low-\(\beta\) magnet system description and specification

Identification of risk (Cryogenics and Radiological)

Safety risk assessment

Mitigating the risk

Engineering process approaches
The low-\(\beta\) magnet systems at the LHC

Inner Triplet for final beam focusing/defocusing

American contribution to the LHC

@ high luminosity points

Electrical feed-box (DFBX)

@ low luminosity points

ICEC23 - Cryogenic Safety Aspect of the Low-\(\beta\) Magnet Systems at the LHC
Underground views: 80-120 m below ground level

Air flow m/s

One way
Tunnel restriction

Escape path

Looking toward IP

Experimental Hall
The low-$$\beta$$ magnet system safety specification

Design and operation requirements:

- Critical system for LHC performance, but the system operation and maintenance should remain **safe for personnel and for equipment**, e.g. escape path, absorbed radiation dose, embrittlement, polymer prop. decay.

- Equipment, instrumentation and design shall comply with the CERN requirements, e.g. ES&H, LHC functional systems, Integration

- Risks identified: Mechanical, electrical, cryogenics, radiological

- **Cryogenic risk** → FMEA, Use the Maximum Credible Incident (MCI)

- **Radiological** → Use **materials resistant to the radiation rate** permitting an estimated machine lifetime, even in the hottest spots, exceeding 7 years of operation at the baseline luminosity of $$10^{34} \text{cm}^{-2}\text{s}^{-1}$$.

- **Personnel safety**: Keep residual dose rates on the component outer surfaces of the cryostats **below 0.1 mSv/hr.**

- Apply the **ALARA** principle (As Low As Reasonably Achievable).
Cryogenic risk through the Maximum Credible Incident (MCI)

Case 1: Electrical arc (inner triplet conductors) at nominal current
- No personnel is allowed in the tunnel.

- Opening to the vacuum/helium space = 60 cm²
- Maximum pressure in the insulating vacuum shall not exceed 1.17 bara
- Maximum flow venting at the safety relief device = 15 kg/s
- Helium discharge temperature though the safety relief valve = 20 K
- Number of recommended safety relief device=3 DN200 + 3 DN65

Case 2: Minor electrical arc (inner triplet conductors) at reduced current or leak from the helium space to the insulating vacuum
- Personnel is allowed in the tunnel.

- Opening to the vacuum/helium space = 4 cm²
- Maximum pressure in the insulating vacuum shall not exceed 1.03 bara
- Maximum flow venting at the safety relief device = 1 kg/s
- He. discharge temperature though the safety device=80 K
- Number of recommended safety relief device=1 DN200

New DN200 @ high luminosity points:

- *Existing relief device*
- *New DN200 relief device*
Consequences of the Maximum Credible Incident (MCI)

- Add three additional DN200 safety relief devices to the existing three DN65.
- Removal of the thermal screen in front of the safety valve.
- Deflector to allow personnel interventions and to protect carbon steel equipment.
- Installation of ODH monitoring systems, signs, evacuation siren and flashing light.
- Staged relief: one dedicated relief device to open at lower pressure level than others.

Christine Darve

Temperature distribution

Oxygen concentration

12 m in 6 sec

Temperature (K)

ODH sign

DN200 Safety Device

Preliminary numerical simulation

Courtesy of CERN/TGS

Temperature distribution

50 sec
Radiological risk (By courtesy of N. Mokhov)

IR5 azimuthally averaged power distribution

Radial distribution of azimuthally averaged dose (Gy/yr)

→ Magnet quench limit = 1.6 mW/g

For comparison: Arc magnet ~ 1 Gy/yr

Christine Darve

ICEC23- July 21st 2010
Radiological risk mitigation

• The inner-triplet final design included additional radiation shielding and copper absorber (TAS).

• The chosen instrumentation and equipment are radHard and halogen free (neutron irradiation experiment performed on temperature sensors: fluence values close to 10^{15} neutrons/cm2, corresponding to 2×10^4 Gy.)

• PEEK versus Kel-F material used for the DFBX low temperature gas seal.

• LHC tunnel accesses modes were defined, e.g. control and restricted modes.

• Specific hazard analysis is requested to intervene on the low-β magnet systems.

Radiological survey is systematical performed prior intervention (< 1mSv/hr).

• Procedures written based on lessons learned and to limit the personnel exposition time.

• The process control makes use of different interlocks and alarm level for each operating mode.

By courtesy of N. Mokhov

Averaged over surface residual dose rate (mSv/hr) on the Q1 side ($z=2125$ cm, bottom) of the TAS vs irradiation and cooling times. By courtesy of N. Mokhov.

Christine Darve

ICEC23- July 21st 2010
Risk mitigation: control operation upsets

• The so-called “Cryo-Start” and “Cryo-Maintain” threshold were tuned

• Temperature switch ultimately protect the operation of the HTS leads by using the power converter

• Temperature switch on the safety relief valve to monitor possible helium leak

• Interlocks on insulating vacuum pressure measurement

• DFBX Vapor Cooled Lead (VCL) voltage drop is 160 mV

• If pressure in the helium distribution line rise, then isolate DFBX (w/ low MAWP)

Christine Darve

ICEC23- July 21st 2010
Risk mitigation: personnel training

• In addition to the use of software and hardware interlocks to limit risks, personnel’s training is of prime importance.

• New classes comply with the CERN safety policy. They train the personnel to behave safely in a cryogenic and radiation environment.

• Awareness and preventive actions are mandatory to complete each technical task. Dedicated hazard analyses are enforced to work in the low-β magnet system area.

“Compact” DFBX area
Engineering process approach

• Failure Mode and Effect Analysis
• “What-Ifs” Analysis

<table>
<thead>
<tr>
<th>What-If</th>
<th>What-If</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quench on the low beta magnet system</td>
<td>Power Supply Power Outage</td>
</tr>
<tr>
<td>Cold compressor stops</td>
<td>Thermometry crate dies</td>
</tr>
<tr>
<td>Compressed air fails</td>
<td>Fieldbus: e.g. Profibus or WorldFIP fails</td>
</tr>
<tr>
<td>Cryostat Insulating vacuum break</td>
<td>Industrial PC: e.g. FEC fails</td>
</tr>
<tr>
<td>QRL line rupture</td>
<td>PLC fails</td>
</tr>
<tr>
<td>Helium return line leaks/ruptures</td>
<td>Ethernet Network fails</td>
</tr>
<tr>
<td>He supply line leaks/ruptures</td>
<td>UNICOS/SCADA communication loss</td>
</tr>
<tr>
<td>Water cable leaks/ruptures</td>
<td>CIENT communication loss</td>
</tr>
<tr>
<td>Current leads overloaded</td>
<td>DB, Logging communication loss</td>
</tr>
<tr>
<td>Beam Interlock System Fails</td>
<td>QPS and power supply fail</td>
</tr>
<tr>
<td>Large radiation dose achieved</td>
<td>Power Interlock Controller fails</td>
</tr>
</tbody>
</table>

⇒ Safe for personnel and equipment: safety valves are properly sized
Engineering process approach

Opening to a new Engineering process approach:
A new engineering manual was issued at Fermilab: Engineering Process sequences

• This risk-based graded approach provides safe, cost-effective and reliable designs.

• The implementation flexible to loop within the given sequences.

• The implementation of this process will be adjusted to the Fermilab future projects
Conclusion

- The low-β system is among the most critical for the operation and performance of the LHC. For the planned upgrades, maintenance and removal will yield an inherent radiological risk.

- This is a main motivation for a well established assessment of the cryogenic and radiological risks.

- Based on the analysis, the hardware commissioning and the lessons learned (including other locations in the LHC) → mitigating risk.

- Continuous improvement of availability, reliability, traceability is on-going.

- In the sake of providing a coherent and methodological approach across HEP laboratories, a systematic safety analysis is recommended for future evolutions and projects.

Acknowledgement: the TE/CRG personnel, the integration group (ILC), the safety group (TGS) and the hardware commissioning team for their technical support. Thanks to Nikolai Mokhov, Laurent Tavian, Tom Nicol and Jim Strait for sharing their expertise. Contributions from Herve Prin have permitted to install safety relief devices.