

CRYOGENICS AT THE MUCOOL TEST AREA

C. Darve¹, R. Alber¹, E. Black², A. Bross¹, M. Cummings³, S. Ishimoto⁴, A. Klebaner¹, W. Lau⁵, A. Martinez¹, B. Norris¹, L. Pei¹, M. Popovic¹, S. Suzuki⁴, and S. Yang⁵

¹ Fermi National Accelerator Laboratory, USA

² Illinois Institute of Technology, USA

³Northern Illinois University, USA

⁴ KEK, Japan

⁵ Oxford University, UK

Headlines

MTA cryogenic requirements

- Tests under development
- Description of cryogens and system warm gas
- System characteristics

Cryogenic system installation

- Layouts
- Helium and nitrogen systems
- Hydrogen system safety requirements

Current test set-up: KEK convective LH₂ absorber test

- Cryo-system flow schematic
- Components and requirements (see Shigeru Ishimoto's talk)
- Status

Future test set-up: Forced-flow LH₂ absorber test (Conceptual Design)

- Cryo-system flow schematic
- Components and requirements
- Heat transfer numerical calculations (see Wing Lau's talk)

CD-01/30/04

Tests under development

 Long term: MTA cryogenic systems are sized to accommodate SFOFO2 coolingchannel components (RF, LH₂ absorber, etc.):

→ 25 liters of LH₂

The beam is "cooled" by energy loss in the cooling channel; both transverse and longitudinal momentum is lost to collisions with atomic electrons but the longitudinal momentum is restored by the RF acceleration between the absorbers.

SFOFO2 cooling-channel components proposal

Short term: KEK convective LH₂ absorber test:

→ 6.2 liters of LH₂ (see Shigeru Ishimoto's talk)

FY04: RF test in the Lab G solenoid magnet:

CD-01/30/04

FERMILAB
AD/Cryogenic DepartmentDescription of cryogens and system warm gas

→ Configuration #1: Helium refrigeration plant (to be installed ~ Dec. 2004) :

- > 4 K mode Lab G solenoid magnet supply
- > 14 K mode Forced-flow He/LH₂ heat-exchanger supply: 500 W (static+dynamic)

Configuration #2: Helium temporary Dewar set-up (KEK and RF/Lab G solenoid magnet) :
4 K - Lab G solenoid magnet supply

- ➢ 17 K Convective LH₂ absorber: 100 W
- \triangleright Room temperature gas KEK convective LH₂ absorber beam simulation

→ Nitrogen :

- LN₂ Lab G solenoid magnet supply
- Room temperature gas Purged systems

→ Hydrogen :

➤ Gas H₂ subcool to 17 K, 0.12 MPa by He/LH₂ HX - Forced-flow LH₂ absorber

> Gas H_2 cooled down to 17 K by He/LH_2 HX – KEK convective flow LH_2 absorber

CD-01/30/04

Cryogenic system 3-D drawing

CD-01/30/04

• Two 400 HP 2-stage oil injected screw compressors

Refrigerator Room

- Tevatron satellite refrigerator to be operated on 5 K mode and 14 K mode (3" DE, 3" WE)
- Helium and nitrogen Dewar CD-01/30/04

System characteristics and fluid properties

Item	Value	Unit
LH ₂ operating temperature	17	K
LH ₂ operating pressure	0.12	MPa
LH ₂ density	74.28	kg/m ³
H ₂ boiling point at 0.12 MPa	21	K
H ₂ freezing point at 0.12 MPa	14	K
LH ₂ viscosity	3.05	10 ⁻⁶ Pa-s
LH ₂ specific heat	7696	J/kg-K
Heat of vaporization	445.6	kJ/kg
LH ₂ thermal conductibility	97	mW/m-K
Liquid H ₂ volume ratio at 20 degree C	790	-

Item	Value	Unit
Volume of the LH ₂ loop	25	liter
Volume of the vacuum space	26,000	liter
Refrigeration capacity at 20 K	500	W
Refrigeration max mass flow	27	g/s
Refrigeration operating temperature	14	K
Refrigeration operating pressure	0.2	MPa

FERMILAB

AD/Cryogenic Department

CD-01/30/04

Refrigeration test at Meson (Nov. 2003)

FERMILAB

AD/Cryogenic Department

Tevatron Satellite in stand-alone mode: Measured liquefaction rate : 78 liter/hr

	Wet Engine	Wet Engine	Wet Engine	Wet Engine	Heater	alculated Flov	Heat	Dry Engine	Dry Engine
	Flywheel Spee	Inlet Temp.	Outlet Temp.	Outlet Press	Outlet Temp.	thru Heater	Input	Flywheel Speed	Inlet Temp.
	(rpm)	(K)	(K)	(psig)	(K)	(g/s)	(watts)	(rpm)	(K)
3'' Wet Engine and	174.00	21.53	12.49	15.53	17.02	27.54	676.00	53.00	145.30
3'' Dry Engine			12.49		14.00	27.54	227.40	< Calculated Heat I	nput to Warmup to 14.0
			14.00		17.02	27.54	448.50	< Calculated Heat I	nput from 14.0 K to 17.0
	176.80	23.76	13.58	16.01	18.05	25.27	608.80	23.71	181.30
3'' Wet Engine and			13.58		14.00	25.27	57.80	< Calculated Heat I	nput to Warmup to 14.0
2" Dry Engine			14.00		18.05	25.27	551.00	< Calculated Heat I	nput from 14.0 K to 18.0
	176.80	24.54	14.00	16.00	19.02	24.91	673.30	33.00	172.50
	176.80	24.65	14.00	15.95	19.35	24.73	710.60	46.20	164.30
3'' Wet Engine with	173.70	23.37	13.19	14.57	17.82	25.58	639.00	NA	NA
Dry Engine off and			13.19		14.00	25.58	113.00	< Calculated Heat I	nput to Warmup to 14.0
5% EVLN Flow			14.00		17.82	25.58	526.00	< Calculated Heat I	nput from 14.0 K to 17.8
CD-01	/30/04		Mu	on Collabor	ation meetir	a - Riverside	Ş		

Hydrogen System Safety Requirements

The cryo-system was designed in accordance with :

- American Society of Mechanical Engineers (Boiler and Pressure Vessel Code, ...)
- National Electrical Code (art. 500, etc.)
- Fermilab Environment Safety & Health Code (art. 5032,etc.)
- Compressed Gas Associates

FERMILAB: "Guidelines for the Design, Fabrication, Testing, Installation and Operation of LH2 Targets – 20 May 1997" by Del Allspach et al. Fermilab RD_ESH_010– 20 May 1997

NASA: " SAFETY STANDARD FOR HYDROGEN AND HYDROGEN SYSTEMS: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation"

Ignition sources (NASA Guidelines)

- Electrical sparks or static electricity (breaking electrical connections, nylon clothing, etc.)
- Friction sparks, Impact sparks (sandblasting)
- Hydrogen auto-ignition (hot points, etc.), Temperature 584 C
- → Minimum spark energies for ignition of H_2 in air is 0.017 mJ at 1 atm, 300 K Lower pressure for ignition is ~1 psia (min abs. 0.02 psia or 1.4 mbar)

All electrical equipments located in the Experimental Hall should be Class I Division II Group B or intrinsically safe when hydrogen is present.

CD-01/30/04

Hydrogen System Safety Requirements

Elements of design to lower the risk of ignition and safe the cryo-system

- ✓ Safety reviews by Fermilab LH_2 experts.
- ✓ Hazard analysis (What-if, FMEA, etc.).
- Operating procedures, emergency procedures.
- Instrumentation and components testing.
- \checkmark Training on use of LH₂.

- \checkmark 25 liters of LH₂ can be contained at SPT in the vacuum buffer tank: no secondary container.
- ✓ Safety PLC for process controls (QUADlog), interlock, and warning system.
- Redundant safety system.
- \checkmark Purged H₂ vent lines and electronic cabinet with N₂.
- Conduit, Power Limit Tray Cable and MC cables.
- ✓ Instrumentation choice: C1 D2 GB, capacitance type, Output signal 4-20 mA
- ✓ Weld and VCR fitting are preferred to flange or other fitting.
- ✓ Material recommended: Aluminum, austenitic steel, copper, titanium, PTFE, Kel-F, etc.
- Radiation hardness: 0.11mS/hr (11mrem/hr).

Vacuum Buffer Tank implementation

The total volume of the insulation vacuum in which the MTA LH_2 absorber is contained must be 790 times larger than the hydrogen cryo-loop capacity in order to withstand the saturated LH_2 expansion if a rupture of the system should occur.

H2 vent lines

Emergency hydrogen vent

A 22.4 m³ vacuum buffer tank is connected to the LH₂ absorber cryostat vacuum vessel to increase the vacuum volume and be in accordance with the safety requirements.

FERMILAB

AD/Cryogenic Department

KEK convective LH₂ absorber test

AD/Cryogenic Department

FERMILAB

KEK convective LH₂ Absorber test (Shigeru Ishimoto's talk)

KEK convective LH₂ absorber

KEK cryostat with H₂ to vacuum vent line

Instrumentation

CD-01/30/04

FERMILAB AD/Cryogenic Department **Forced-flow LH**₂ Absorber test Flow Schematic

FERMILAB Forced-flow LH₂ Absorber Requirements

Forced-flow LH₂
absorber (see Wing Lau's talk)
LH₂ pump
(SAMPLE/ Caltech)

 \Rightarrow He/H₂ counter-current flow heat exchanger (500 W)

			_
	LH_2	He	Unit
Р	17.6	30.7	psia
Taverage	17.5	15.8	K
m	63	21	g/s
r (P , T)	74.28	5.7	kg/m ³
Cp (P,T)	8082	5353	J/kg-K
h (P , T)	171.4	32.6	μpoise
l (P , T)	100	24	mW/m-K
Pr	1.382		
Aflow	14.55	1.56	cm^2
G	4.33	13	a/cm^2 -s
De	0.336	0.378	cm
Ahex	11.25		cm^2/in
h	0.109	0.183	W/cm^2 -
T	247		W/K

✓ Transfer lines with cryo-system (H_2 , He, N2)

✓ Instrumentation (PT, TT, LT, FT, IT, HR, etc.)

Electro-pneumatic valves

✓ Piping (1", 2" IPS)

LH₂– Components

 \checkmark LH₂ buffer (1 liter, LT, etc.)

CD-01/30/04

Total h	eat load estim	ation	
Heat load (W)	80 K	17 K	
Mechanical Supports	67	6	
Superinsulation	1.5	0.2	
Cryostat windows	-	17	
LH2 pump	-	50	
Total	68.5	73.2	
CD-01/30/04	Mu	on Collaboration meeting	- Riverside

➤ The development of the cryogenic system for the MuCool Test Area is in compliance with safety codes.

> Helium refrigeration plant is sized according to the LH_2 forced-flow absorber test requirements and will make use of Tevatron satellite components.

Expander test has been performed to ensure the supply of 27 g/s of helium at 14 K, 15 psig (0.2 MPa).

➤ Supply of 5 K helium to the Lab G solenoid magnet will be possible with a switchover mode of the refrigeration plant as the intense ionization beam will be off. Ten hours is needed to fill the solenoid magnet from 14 K to 5 K.

> Liquid helium Dewar will be used to ensure 1.58 g/s of helium supply to maintain the forced-flow LH_2 absorber at 14-20 K.

Liquefaction rate is 78 liter/hr.

> A first configuration with helium and nitrogen Dewar will permit to operate KEK convective LH_2 absorber test and RF cavities test with the Lab G solenoid magnet.

>The Conceptual Design of the forced-flow LH_2 absorber design was presented.

CD-01/30/04

Extra slides

Velocity at the inner chamber inlet (m/s)

→ Influence of flow symmetry and number of active nozzles

→ Configuration with 15 inlet nozzles and 19 outlet nozzles; velocity 2 m/s at inner chamber inlet

CD-01/30/04

The design of the MTA cryo-system permits us to create the Aborber Safety Review book-Ref ES&H: **5032.2: GUIDELINES FOR THE DESIGN, REVIEW AND APPROVAL OF LIQUID CRYOGENIC TARGETS**

- The Target Safety Review book shall contain all of the required documents of Chapter 5032TA, including the following:
- 1. Structural calculations on all parts of the target
- 2. Venting calculations for the target
- 3. Venting calculations for the vacuum space
- 4. Venting calculations for the secondary containment
- 5. Complete drawings of the target, vacuum system and secondary containment
- 6. Instrument and valve summary
- 7. Interlock list
- 8. Operating procedures
- 9. Emergency procedures
- 10. Operational call-in list
- 11. Material certification data on part
- 12. FMEA, what-if analysis
- 13. Flow diagram
- 14. Testing results

CD-01/30/04

Introduction to Muon Ionization for Cooling R&D (MuCool)

Muon Collaboration

MuCool Collaboration: 18 institutions from US, Europe and Japan

Muon Collider and Neutrino Factories ["Recent progress in neutrino factory and muon collider research within the Muon Collaboration", Physical review special topics- Accelerators and Beams, vol. 6, 081001 (2003)]

Mission

- Design, prototype and bench test all cooling-channel components (RF, LH₂ absorber, etc.)
- Support cooling demonstration in muon beam (MICE)
- Dev. of intense ionization beam (400 MeV beam up to 2.4x10¹⁴ p/s: 570 W in 35-cm LH₂ absorber)

Introduction to Muon Ionization Cooling R&D (MuCool)

Helium Cryogenic Facilities - Status

CD-01/30/04

Cryogenics at MuCool Test Area

CD-01/30/04