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Measurements of temperature
on LHC thermal models

Z Thermal measurements on models
Z Presentation of both projects
Z Sensors implementation
Z Results

Z Use of cryogenic thermometers at Fermilab and at CERN

Z Uncertainty evaluations
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Introduction to LHC thermal models

Inner Triplet heat exchanger test unit (US-IT-HXTU)
y Validation of the Inner Triplet cooling scheme

ü Heat transfer based on the exchange between the two-phase saturated He II
used to extract heat loads generated in the stagnant pressurized He II bath.

ü Extreme heat loads due to the detector proximity : nominal Q’=7 W/m.

y Investigation in a linear model-based predictive control
ü Reduce requirements on temperature sensor, cryogenic sys. performance
ü Self-regulating process

y Related project: Small scale heat exchanger test
ü Material property measurements: Kapitza resistance.
ü Results used to estimate the wetted area of the full-scale model.
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From the LHC Inner Triplet to the Inner Triplet heat
exchanger test unit

IT  to Thermal modelIT  to Thermal model

••Four modulesFour modules

••Magnet simulatorsMagnet simulators

••Full helium capacityFull helium capacity
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Inner triplet heat exchanger test unit
Modules

8 cryogenic thermometers

2 heaters
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Inner triplet heat exchanger test unit
Piping system

Heat exchanger tube

Shield cooling pipes Sat He II supply
Magnet simulator

Pressurized He circuit
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Inner triplet heat exchanger test unit

Instrumentation port flange

                                                              Feed-box----

–                    ----Turnaround
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Inner triplet heat exchanger test unit
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Thermal measurements on the US-IT-HXTU

j Why do we perform thermal measurements?

j To measure the temperature rise along the He II heat load path, for different
LHC heat load scenarios-> maximum: heat load, Tsat.

j To understand the behavior of He II (co-current two-phase flow, wetted area).
j To calibrate and measure the performance of the HX tube.
j To validate the theoretical model->ultimate LHC condition (472W).

ò Function of temperature measurements

ò Display the transport of the heat load from pressurized to saturated He II.
ò Indicator to check the evolution towards steady-state conditions.
ò Variable parameter, Tsat, for various measurements of the HX tube

performance.
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Thermal measurements on the US-IT-HXTU

ñ How are they implemented ?

Glued to printed circuit board (PCB) card.

Thermometers immersed in pressurized He II bath along the 
HX tube (pressurized side) and magnet simulator pipes.

Thermometer wires routed through a 3 m long feedthrough 
from the pressurized He II bath to the room temperature.

Measurement of the saturated temperature provided from the 
pressure measurement.

To reduce air leaks through the instrumentation feedthrough
(subatmospheric circuit).

PressurizedPressurized
He IIHe II
temperaturetemperature

SaturatedSaturated
He IIHe II
temperaturetemperature
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Thermal measurements on the US-IT-HXTU

Pressurized He IIPressurized He II

Connector    @Connector    @
Room temperatureRoom temperature

Outer shell of the HX

HX
Saturated He IISaturated He II
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Thermal measurements on the US-IT-HXTU

From JT valve

 
Tsat9214

TT4121 TT4151 TT5121

TT4121B TT4151B TT5121B RB

TT4221 TT4251 TT5221

TT4221B TT4251B TT5221B

Y4203

DT1

DT3

DT4

DT2

DT5
DT6

DT1: from the Module thermal center, 
to the module end within the pressurized He II

DT2: within the connecting pipe

DT3: between connecting pipe and He II HX

DT4: within the pressurized He II side of He II HX

DT5: across the He II heat exchanger wall 

DT6: due to the vapor pressure drop.
Vapor V= 448 cm/sec
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Thermal measurements on the US-IT-HXTU

ñ Heat transfer into and through pressurized He II (DT 1 - 4)

One-dimension model
 In steady-state, heat flux Q’ is given by:
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US-IT-HXTU- Small scale HX

z Kapitza Resistance and DT 5

                                                                                                                                                  Rkapitzaα
2

Ckapitza S.

β
e

S Ccu.

Rth=2.Rkapitza+Rcu=α(1/Tpres3)+β

Rth=(Tpres-Tsat)/Qelec
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Thermal measurements on the small-scale heat
exchanger test unit - results
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#1

#2

#3

OFHC-US-IT-HXTU

Bronze (95%Cu-5% Sn)

OFHC+ HCl

#1 - OFHC #2 – OFHC + HCl #3 - Bronze
Characteristics

OD/ ID (mm) 97/86 97/86 123/101
Wall thickness (mm) 0.7 0.7 0.5
Corrugation depth (mm) 5 5 11
Corrugation pitch (mm) 12.4 12.4 11.7
Surface (cm2) for one side 416 416 978
Shape of the corrugated pipe Helical Helical Bellows
Surface treatment None Hydrochloric acid None

Results
CKapitza (W ⋅ K-4 ⋅ m-2) 893 1138 565
Kapitza conductance @ 1.85 K (W ⋅ K-1 ⋅ cm-2) 0.565 0.72 0.357
Thermal conductivity @ 1.85 K (W ⋅ K-1 ⋅ m-1) 88 88 2.4
Relative performance Ref. 27% -37%
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US-IT-HXTU - Nominal Condition: 248 W
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US-IT-HXTU - Ultimate Condition: 315 W
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US-IT-HXTU - Some results

C/C: The difference of temperature on the heat exchanger interface < 50 mK.
The thermal gradient within the heat exchanger pipe is still to be measured in december at CERN.

Ultimate condition @ 315 W

P=24.1 mbar

Tsat Tsat ~ 1.90 K~ 1.90 K

P~21 mbarP~21 mbar
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Thermal measurements on the US-IT-HXTU
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DT

Predicted Measured

Example for Tsat= 1.915 K , Q’tot= 315 W

Heat loads on the US-IT-HXTU extrapolated from the heat load in the Inner Triplet at IP5 or IP1,
by Tom Peterson.

Equations:

dT/dx=-f(T) qm

=>∆T=q3L/1200
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Cryostat thermal model (CTM)

z Measurements of the LHC cryostat dipole performance
+ Heat loads to the actively cooled shield and to the dummy cold mass.
+ Components performance:

õ Multi-Layer Insulation,
õ support posts,
õ beam screen,
õ cryogenic thermometers.

z Conditions under investigation
õ Steady-state and transient modes for the LHC conditions
õ Insulation vacuum degradation

z Adoption of an actively cooled screen @ 5-10 K (CTM3)?

Introduction to LHC thermal models
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Thermal measurements on the CTM
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Thermal measurements on the CTM

View of the radiation screen View of the dummy cold mass
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Thermal measurements on the CTM

LHC accelerator cross-section CTM3 cross section
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Thermal measurements on the CTM
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z Performance of the thermal shield (50-75K) and radiation screen(5-10K)
The temperature is measured at each extremity of the helium pipes

z Heat load to the dummy cold mass
  Heat load to the dummy cold mass is measured with the boil-off method

Thermal measurements on the CTM

m’ = mass-flow, 
∆H = enthalpy difference

Q’ = m’·  ∆H

m’ = mass-flow, 
L = latent heat of vaporization

Q1.9 K’ = m’ ·  L
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Implementation of sensors on the CTM

On the cold mass

On a pipe

On the shield



Ch. D. 12/05/00 Measurements of temperature on LHC thermal models 27

Implementation of sensors on the CTM

In the MLI

Thermalization of the
instrumentation wires
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Some results - CTM2

Total heat load measured:
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Line E
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Total

@ 50-75 K / Line E+F
error: ± 5%

@ 5-20 K / Line C+D
error: ± 4.7%

@ 1.9 K
error: ± 2.5%

 Heat inleak
[W/m]

measured calculated measured calculated measured calculated
CTM1 4.78 4.58 0.23 0.24 0.18 0.19
CTM2 4.32 4.12 0.48 0.33 0.16 (1) 0.12

The contribution of the feed box on the measured He in-leak at 1.9 K is estimated to 390 mW.

@5-10K@5-10K
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Influence of the insulation vacuum degradation
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CTM3 - Some results

   = CTM3, dummy cold mass experienced He leaks 
-> results difficult to interpret.

   = MLI qualification on an horizontal cryostat was performed.
   = Choice of the shield assembly: welded to the extruded pipe

C/C: Since the cost of a radiation screen material is dominant and even if a better performance
with a 5K cryostat was measured, the LHC cryostat will only consider to wrap 10 layers of MLI
around the cold mass. No rigid radiation screen (5-10 K) will be used in the LHC accelerator.

Averaged heat loads (Watts): Insulation vacuum 7.5⋅10-5 Pa

Component Average Temperatures K 50-75 K 5-10 K 1.9 K

Supply and return boxes 0.300
Thermal shield 68 43.2
Radiation screen 8.7 3.1
Cold-mass 1.8 0.441
Support System 14.9 1.1 0.129
Total CTM Cryostat 28.3 2.0 0.012

w/o actively cooled shield @5-10K

w/ partial cooled shield @5-10K

w/ actively cooled shield @5-10K



Ch. D. 12/05/00 Measurements of temperature on LHC thermal models 30

Some cryogenic thermometers used at
Fermilab - US-IT-HXTU

è Thermometer immersed into He II bath
è Commercial sensors
è Printed circuit board
è Calibration facility
è Chebychev polynom

k Pro and cons
+ Cryogen true value
- Implementation
- Feedthrough&Connector
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Some cryogenic thermometers used at
Fermilab

Allen-Bradley

Cernox+copperCernox on cards
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Calibration of the thermometer

z Fermilab facility
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è Under vacuum: Industrial-type cryogenic thermometers with built-in
heat intercept
è Sensor implementation
è Thermometric bloc
è Accessories

Copper blocs
Radiation protection
Thermalization foil

k Pro and cons
+ Easy-to-use
- Thermal anchoring

Some cryogenic thermometers used at
CERN - CTM
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z Layout of the cryogenic thermometer

Some cryogenic thermometers used at CERN
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Some cryogenic thermometers used at CERN

// foil
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Uncertainty evaluations

õõ Measurement stringMeasurement string
õ Cryogenic thermometer
õ wire, conditioner
õ control system and acquisition
õ calibration fit 

åå Environmental factorEnvironmental factor
å Thermo-cycling
å Moisture
å Magnetic field
å Irradiation

Error± 5 mK at 1.8 K

Systematic errorSystematic error
•Calibration: fit

•Effect of the liquid level gauge

Statistical errorStatistical error
•Stability of the bath temperature

•Stability of (Tpres-Tsat)
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Overheating

Check US-IT-HXTU thermal measurements:
õ Thermometers calibrated with a 0.2 µA current but used with a 1 µA.
õ Implementation on the PCB

ò High resistance at low temperature (40 kΩ at 1.8 K)

ò Large dispersion of resistance (40-12 kΩ at 1.8K)
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Overheating - Resistance influence

                                                  To = Temperature out of the calibration fit relative
       to a current of 0.2 µA used for the calibration data.

                                                                 If : R=32 KΩ @ 1.8 K
                                                                      I=1 µ A
                                                                 then Error = 0.1%

If : R=12 KΩ @ 1.8 K                                                                     
I=1 µ A

then Error = 0.02%

Influence of the self-heating {R=39kohm @1.8K, I=0.2microA} 
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Influence of the self-heating {R=12kohm @1.8K, I=0.2microA} 
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Overheating - fitting expression

T= Σ Ai·Xi

Z= log (R)

X=((Z-Zl)-(Zu-Z))/(Zu-Zl)

T=Σ Ai ·  COS (i·  ARCCOS(X))
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Calibration fit:Calibration fit:

w/ R@ 0.2 w/ R@ 0.2 microAmpmicroAmp

T=T=CherbCherb(R0.2)(R0.2)

T: R w/ 0.5- 20 microAmp

To: R w/ 0.2 microAmp
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Conclusion

í Measurement of thermal model performances
í Temperatures rise in He II => US-IT-HXTU
í Heat loads => CTM

í Improvement of techniques for measurements of temperature

í Better reliability


