# Instrumentation Status of the Low-beta Magnet Systems at the LHC

Christine Darve, Christoph Balle, Juan Casas-Cubillos, Antonio Perin, Nicolas Vauthier

July 22<sup>nd</sup>, 2010

Headlines:

System Description Instrumentation Identification Reliability Availability Traceability

#### The Low-beta Magnet Systems at the LHC



# Type of instrumentation



# Type of instrumentation







\*HTS leads \*VCL leads \*Inner triplet feedthrough



CV8xx: control valve





Christine Darve

ICEC23- July 22nd, 2010

#### Reliability – Instrumentation (quality + quantity)

Example for the Temperature sensors :

→ Goal: precision must remain better than 0.25% (5 mK at 2 K)

By principle, use redundant system

#### Test benches:

- □ Thermo cycle
- Irradiation test : fluence values close to 10<sup>15</sup> neutrons/cm<sup>2</sup>, corresponding to 2.10<sup>4</sup> Gy

| Thermometer<br>(+number tested) | R @ 1.8K       | dR/dT @ 1.8K                  | <b>σ</b> <sub>т</sub> @ 1.8K | beam heating<br>mK/(n.cm <sup>-2</sup> .s <sup>-1</sup> ) | $\Delta T$ Irradiation<br>for 4 10 <sup>14</sup> n.cm <sup>-2</sup> | Expected ΔT in<br>LHC |
|---------------------------------|----------------|-------------------------------|------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------|-----------------------|
| AB (44)                         | 6600 $\Omega$  | -10600 Ω.K <sup>-1</sup>      | 8.10-5                       | 9 10 <sup>-10</sup>                                       | +2 mK                                                               | < 2 mK                |
| TVO (44)                        | 5700 $\Omega$  | -3300 Ω.K <sup>-1</sup>       | 3.3 10-5                     | 3 10 <sup>-10</sup>                                       | +0.3 mK                                                             | < 0.5  mK             |
| CX (66)                         | $12600 \Omega$ | -12000 Ω.K <sup>-1</sup>      | 2.5 10-5                     | 10-10                                                     | +1 mK                                                               | < 2  mK               |
| Ge (5)                          | 9000 <b>Ω</b>  | -8000 Ω.K <sup>-1</sup>       | 1.2 104                      | 0                                                         | +300 mK                                                             | +300 mK               |
| RhFe thin-film (46)             | 15 Ω           | $+0.7 \Omega.K^{-1}$          | 3.10 <sup>-5</sup>           | 0                                                         | +12 mK                                                              | +3 mK/year            |
| RhFe wire (36)                  | 5.4 <b>Ω</b>   | $+0.6 \Omega.K^{-1}$          | $2.6  10^{-5}$               | 0                                                         | +5 mK                                                               | +1.5 mK/year          |
| Pt (22)                         | $1.7 \ \Omega$ | $+3.5 \ 10^4 \ \Omega.K^{-1}$ | -                            | -                                                         | +1.5 K                                                              | -                     |

Table 1 Results of irradiation at 1.8 K (average values)

#### References:

Amand,, et. al., Neutron irradiation tests in superfluid helium of LHC cryogenic thermometers, International Cryogenic Engineering Conference - 17, Bournemouth, UK (1998), 727-730

Amand,, et. al., Neutron Irradiation Tests of PressureTransducers in Liquid Helium, Advances In Cryogenic Engineering (2000), 45B, 1865-1872

# Reliability – Performance measurement



Christine Darve

ICEC23- July 22nd, 2010

# Availability: Data flow & LHC Logging Cryogenics Data



ICEC23- July 22nd, 2010

# Availability : Process Control Object



# Availability : Option modes / steppers



Christine Darve

#### Availability - Radiological risk mitigation - 21-OR-2-05

LHC operation annual radiation dose for the arc magnet and for the CMS/ATLAS low-k regions are 1 and 1000 Gy, respectively

- $\rightarrow$  No easy repair when inherent radiation !
- → The chosen instrumentation and equipment are radHard and halogen free
- → Use of redundancy
- → Specific hazard analysis is requested before personnel intervention

→ Radiological survey is systematical performed prior intervention (< 1mSv/hr)</p>

→ Limit the personnel exposition time (individual and collective radiation doses)

→ Radio-Protection Procedures to be written based on lessons learned and other institutes experiences



Christine Darve

### Traceability - MTF



#### Conclusion

- The low-β system is among the most critical for the operation and performance of the LHC. For the planned upgrades, maintenance and removal will yield an inherent radiological risk
- During the LHC hardware commissioning, the original equipment and instrumentation were tested → leading to the need of further implementation
- Every intervention must be carefully planned with RP
- Continuous improvement of reliability, availability, traceability is on-going.

**Acknowledgement**: the TE/CRG personnel, the hardware commissioning team for their technical support, the integration group (ILC) and the safety group (TGS).