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The low-3 magnet systems at the LHC
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Underground views : 80-120 m below ground level
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The low-[3 magnet system safety specification

Design and operation requirements:

o Critical system for LHC performance, but the system operation and maintenance

should remain safe for personnel and for equipment,
e.g. escape path, absorbed radiation dose, embrittlement, polymer prop. decay.

0 Equipment, instrumentation and design shall comply with the CERN requirements,
e.g. ES&H, LHC functional systems, Integration

0 Risks identified: Mechanical, electrical, cryogenics, radiological

0 Cryogenic risk 2 FMEA, Use the Maximum Credible Incident (MCI)

0 Radiological > Use materials resistant to the radiation rate permitting an
estimated machine lifetime, even in the hottest spots, exceeding 7 years of
operation at the baseline luminosity of 1034cm-2s-1.

0 Personnel safety: Keep residual dose rates on the component outer surfaces of
the cryostats below 0.1 mSv/hr.

0 Apply the ALARA principle (As Low As Reasonably Achievable).
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Cryogenic risk through the Maximum Credible Incident (MCI)

Case 1: Electrical arc (inner triplet conductors) at nominal current
- No personnel is allowed in the tunnel.

¢ Opening to the vacuum/helium space = 60 cm?

¢ Maximum pressure in the insulating vacuum shall not exceed 1.17 bara
¢ Maximum flow venting at the safety relief device = 15 kg/s

e Helium discharge temperature though the safety relief valve = 20 K

= Number of recommended safety relief device=3 DN200 + 3 DN65

Case 2: Minor electrical arc (inner triplet conductors) at reduced current or
leak from the helium space to the insulating vacuum
- Personnel is allowed in the tunnel.

Opening to the vacuum/helium space = 4 cm?2

Maximum pressure in the insulating vacuum shall not exceed 1.03 bara
Maximum flow venting at the safety relief device = 1 kg/s
He. discharge temperature though the safety device=80 K
= Number of recommended safety relief device=1 DN200

New DN200 @ high luminosity points:
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Consequences of the Maximum Credible Incident (MCI)

Courtesy of CERN/TGS
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Radiological risk (By courtesy of N. Mokhov)
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Radiological risk mitigation

eThe inner-triplet final design included additional radiation shielding and copper

absorber (TAS)

eThe chosen instrumentation and equipment are radHard and halogen free
(neutron irradiation experiment performed on temperature sensors : fluence values
close to 10%° neutrons/cm?, corresponding to 2.10% Gy.)

*PEEK versus Kel-F material used for the DFBX low temperature gas seal

| HC tunnel accesses modes were defined, e.g. control and restricted modes

eSpecific hazard analysis is requested to
intervene on the low- magnet systems
Radiological survey is systematical
performed prior intervention (< 1mSv/hr)

eProcedures written based on lessons
learned and to limit the personnel
exposition time

eThe process control makes use of different
interlocks and alarm level for each
operating mode
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Dose rate (mSwv/hr)

Averaged over surface residual dose rate
(mSv/hr) on the Q1 side (z=2125 cm,
bottom) of the TAS vs irradiation and
cooling times. By courtesy of N. Mokhov
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Risk mitigation: control operation upsets

*The so-called “Cryo-Start” and “Cryo-Maintain” threshold were tuned

Temperature switch ultimately protect the operation of the HTS leads by using
the power converter

eTemperature switch on the safety relief valve to monitor possible helium leak
eInterlocks on insulating vacuum pressure measurement
DFBX Vapor Cooled Lead (VCL) voltage drop is 160 mV

eIf pressure in the helium distribution line rise, then isolate DFBX (w/ low MAWP)
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Risk mitigation : personnel training

In addition to the use of software and hardware interlocks to limit risks,
personnel’s training is of prime importance.

‘New classes comply with the CERN safety policy. They train the personnel to
behave safely in a cryogenic and radiation environment.

sAwareness and preventive actions are mandatory to complete each technical
task. Dedicated hazard analyses are enforced to work in the low-f magnet
system area.

“Compact” DFBX area
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Engineering process approach

sFailure Mode and Effect Analysis

“What-Ifs” Analysis

Table 3 Example of simphfied “What-Ifs" Analvsis

Quench on the low beta magnet system
Cold compressor stops

Compressed air fails

Cryostat Insulating vacuum break

CRL line rupture

Helium return line leaks/ruptures

He supply line leaks/ruptures

Water cable leaks/ruptures

Current leads overloaded

Fower Supply Power Cutage
Thermometry crate dies

Fieldbus: e.g. Profibus or WarldEjp fails
Indusctrial PC.e.g. FEC fails

FLC fails

Ethernet Metwork fails
UNICOS/SCADA communication loss
CIET communication loss

DB, Logging communication loss

Beam Interlock System Fails
Large radiation dose achived

QPS and power supply fail
Fower Interlock Controller fails

=» Safe for personnel and equipment : safety valves are properly sized
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Engineering process approach

Opening to a new Engineering process approach:
A new engineering manual was issued at Fermilab: Engineering Process sequences

Requirements and Specifications

\
Engineering Risk Assessment
*This risk-based graded approach provides cequi v T _
: . . equirements and Specifications Review
safe, cost-effective and reliable designs. .
: : : o System Design
*The implementation flexible to loop within 0

the given sequences. Engineering Design Review

b

adjusted to the Fermilab future projects U

Testing and Validation

b

Release to Operations

A

Final Documentation
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Conclusion

The low-p system is among the most critical for the operation and performance
of the LHC. For the planned upgrades, maintenance and removal will yield an
inherent radiological risk

This is a main motivation for a well established assessment of the cryogenic
and radiological risks

Based on the analysis, the hardware commissioning and the lessons learned
(including other locations in the LHC) = mitigating risk

Continuous improvement of availability, reliability, traceability is on-going

In the sake of providing a coherent and methodological approach across HEP
laboratories, a systematic safety analysis is recommended for future evolutions
and projects
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