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ABSTRACT 
 

Phenomenological and Numerical Studies of Helium II  Dynamics in the Two-Fluid Model 
 

Christine Darve 
 

Understanding superfluidity is of paramount importance to generate low-temperature environments 

capable of supporting superconductivity. Today, numerous scientific and technical fields make use of 

high-field superconducting magnets and superconducting RF cavities cooled by Helium II. Experimental 

observation of the normal component of velocity distribution in a Helium II thermal counterflow can be 

done using the Particle Image Velocimetry (PIV) technique. The development of our 3-D numerical model 

for Helium II was specifically motivated by the need to understand and model the experimental results, 

e.g. results obtained by PIV technique. 

The Landau-Khalatnikov two-fluid model and the mutual friction mechanism of Gorter-Mellink are 

very successful phenomenological representations of the properties of Helium II. We used them as a 

basis to develop a set of approximate partial differential equations (PDE) for the superfluid flow. The form 

sought was that of a general vector PDE, where in particular pressure and temperature, the main drivers 

of the flow, appear as explicit state variables. In the case of interest here, i.e. heating induced flow and 

forced flow conditions, this interaction between two fluids has been described by simple expression of a 

power law dependence on their relative velocity. The numerical integration of the resulting PDE was 

implemented in the context of a general class of finite element approximations augmented with a finite 

difference algorithm with upwind scheme to stabilize the solution.  

To reduce the computational complexity to a practical level, several approximations have been 

made, while ensuring that the resulting code is both complete and consistent. The software that we have 

developed can be run on a simple computer with reasonable computing time, and allows modeling a wide 

range of actual cryogenic situations with transient and steady-state heat transfer in Helium II.  Examples 

are ranging from simulations of Helium II behavior as diverse as the second sound propagation, the 

thermal counterflow or the existence of large eddy structures based on the Gorter-Mellink mutual friction.  
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PREFACE 

 

Solid-state physics describes the superfluidity as a macroscopic manifestation of quantum laws. 

Hundred years after the first liquefaction of Helium, which lead to the discovery of superconductivity, 

Helium II has become the most practical fluid exhibiting superfluidity. It is nowadays in common use both 

for technical and for scientific applications such as the high-field superconducting magnets and 

superconducting radio-frequency cavities.  

The research of the Phenomenological and Numerical Studies of Helium II Dynamics in the Two-

Fluid Model was driven by the fascination with the fundamental understanding of helium superfluidity. 

Years of work dedicated to the design, construction and operation of accelerator components in the field 

of High Energy Physics have spiked the curiosity to better understand this non-Newtonian fluid.  

Whereas the original intent of the author was to study the behavior of Helium II using Particle 

Image Velocimetry (PIV) techniques, it became more relevant to focus on the numerical modelization of 

experimental results and studies, which were conducted in world-famous laboratories. Henceforth, the 

core of this research work has been devoted to enhance the numerical capacity and tools used to 

simulate Helium II in the two-fluid model. 

In other words, Fundamental Physics and its Applications feed the technological progress, e.g. 

Helium II, accelerators and detectors are essentials discovery tools for the future generations. 

International scientific collaborations and its diversity program provided a “raison d’être” for numerous 

young talents around the world. The present study is one of its deliverable.    
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LIST OF ABBREVIATIONS 

 

ξ
ρ

  parent-space (local) (ξ, η, ζ ) 

x
ρ

 physical-space (x,y,z) 

α diffusivity  

Φ  potential function 

φ  Gruneisen coefficient 

ρ  bulk density  

μ  dynamic fluid viscosity 

η viscosity 

nη   viscosity of the normal component 

ρp  particle density 

ρf  fluid density 

ρn  normal fluid density 

ρs  superfluid density 

τ   stress tensor 

τslip relaxation time due to the slip 

ω angular frequency  

AGM Gorter-Mellink coefficient 

Cp   specific heat at constant pressure 

Cv   specific heat at constant density 

c  speed of first sound ����
��� 

c2  speed of second sound 

artc  artificial diffusion coefficient 

DC
  

drag coefficient 
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e energy density 

f(T)-1  thermal conductivity function 

FB  body force 

FD  drag force 

Ft  force associated with turbulence (mutual friction) 

FB  body force 

FE  Finite Element 

g  gravity constant 

He I  classical fluid state of 4He 

He II (Helium II) superfluid state of 4He 

h   specific enthalpy 

h   mesh size 

Kh  Kapitza conductance 

i internal energy density 

k thermal conductivity 

Kn  Knudsen number 

LHC Large Hadron Collider 

L2  Euclidean norm  

Linf  uniform norm  

m  mass 

m , M PDE mass matrix and its discrete version  

a , A PDE advection matrix and its discrete version 

g , G PDE diffusion matrix and its discrete version 

s , S PDE source matrix and its discrete version 

q, Q  PDE forcing vector and its discrete version 

u, U PDE vector of unknown 
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N shape function 

P  pressure 

PDE Partial Differential Equation 

Pe Peclet number 

PIV  Particle Image Velocimetry 

q 	  heat flux 

Ra  Rayleigh number 

s  specific entropy 

t  time 

T  temperature 

Tw  warm temperature 

Tc  cold temperature 

Tλ  superfluid transition temperature for 4He, 2.17 K 

Up particle velocity 

v  bulk fluid velocity field (vx, vy, vz) 

v  bulk fluid velocity  

vn  normal fluid velocity vector (vnx, vny, vnz) 

vn  normal fluid velocity  

vs  superfluid velocity vector (vsx, vsy, vsz) 

vs  superfluid velocity  

X(T) heat conductivity function  

w velocity difference, vn-vs  
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1 INTRODUCTION 
 

1.1 Research Outline  

The need to correctly understand and model experimental results in helium cryogenics and 

related applications motivates the development of a three-dimensional numerical model capable of, 

among other things, simulating spherical particles flowing in Helium II [1]. The use of such tracer particles 

is essential in Particle Image Velocimetry (PIV) used to measure the velocity & flow of superfluid [2][3]. 

Controversy over the experimental results in PIV obtained at National High Magnetic Field Laboratory 

(NHMFL) by Van Sciver, Zhang and Celik [4], and the discrepancy between theoretical prediction and 

NHMFL’s measurement of the velocity distribution in Helium II thermal counterflow (zero net mass flux), 

inspired us to undertake this work [5]. We found current models available in the scientific community 

either too limited (e.g., one-dimensional) or too complex and computationally penalizing to make them 

viable for particle studies related to PIV. 

In this thesis work we present a computational method for solving a new set of equation 

addressing Helium II Dynamics in the Two-Fluid Model [6][7][8]. 

We begin our report with the general discussion of Helium properties, starting from the historical 

background up to the present, where superfluid 4He has become a viable coolant for many technological 

applications [9]. Next we focus on atomic and nuclear properties of Helium and explain how the 

macroscopic quantum characteristics of its superfluid state can be understood in terms of the difference 

in the low temperature behavior of bosons and fermions. Helium phase diagrams (illustrated in Section 0) 

and thermo-physical properties (discussed in Section 2.1.4) offer further insights into the extraordinary 

properties of this element.  

In practice, cryogenic applications require heat transfer from the system while maintaining the 

system at cryogenic temperatures. In this process, all aspects of heat transfer take place in a chain that 

includes heat removal from the system to the Helium and transport in stagnant or forced flow of Helium II. 

The importance of a precise knowledge of the heat transfer characteristics for practical applications can 
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be inferred from the wealth of the analytical and experimental efforts devoted to cryogenics for the 

superconducting magnets, e.g., at the Large Hadron Collider (LHC) [10]. 

In Section 2.2 we introduce the two-fluid description as a very successful phenomenological 

representation of the properties of Helium II [11][12][13]. The idea of this model is to associate two co-

existing fluids to the two different states of Helium: a super-fluid that approximately corresponds to the 

Helium atoms that have undergone Bose-Einstein condensation and are in their ground energy state, and 

a normal-fluid that corresponds to the fraction of helium atoms that are in excited states. The two fluids 

can move independently of each other at very low relative velocities, but otherwise, the interaction 

between them takes place through a microscopically complex mechanism that involves quantum vortices. 

In the case of heat induced flow, this interaction can be described by a simple power law dependence on 

the relative velocity, characteristic of the turbulent heat transport, as found by Gorter-Mellink [14].  

An internal convection of the super-fluid and normal-fluid components can take place even 

without experiencing macroscopic motion, i.e., the bulk Helium II flow is zero. This possibility of an 

internal convection associated with a) the presence of a momentum source proportional to the 

temperature gradient in the motion equation of the normal-fluid and with b) the temperature dependence 

of the density of each fluid component, makes heat and mass transfer in Helium II inseparable. The main 

heat transport mechanism in Helium II, which is often referred to as the counterflow heat exchange, is 

associated with transfer of mass among the two-fluid components. We elaborate on the validity of this 

representation and give ample justification for the use of this model in our approach. Inducing a flow and 

thus taking advantage of the energy transfer through mass convection can further augment the large heat 

removal capability of Helium II. It has been shown that in the case of forced flow, the Gorter-Mellink 

mutual friction is still present, along with the energy convection induced by the mass flow. 

Chapter 3 is devoted to the formulation of a system of Partial Differential Equations (PDE) for 

Helium II that is suitable for our purpose. Although common numerical approaches use the conserved 

variables, we use pressure, temperature, normal- and super-fluid velocities as explicit variables. The use 

of these variables has the advantage that the forcing terms in the equations are implicitly solved. 

Specifically, pressure is the driver of the flow, while temperature drives the heat flux. Having them as 
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variables achieves a large degree of stabilization in the numerical solution without resorting to special 

techniques, or iterations. This allows us to increase the time step by one to two orders of magnitude 

beyond the Courant limit, dramatically improving the computational performance of the code, while being 

sufficiently accurate for the case of quasi-steady-state heat transfer in Helium II. 

We take a macroscopic approach to the conservation laws, assuming local thermodynamic 

equilibrium, so that the state of Helium II as well as that of each of the two-fluid components is described 

by independent state variables. Following Roberts and Donnelly [15], we also employ the conservation of 

total energy density of the two flows in the derivation. Our resulting equations are of parabolic-hyperbolic 

form and contain terms representing internal heat convection through entropy transport, transformation of 

superfluid to normal fluid and vice-versa, as well as the internal energy dissipation associated with 

turbulence. The superfluid motion is driven by the divergence of the potential function we introduced 

(thermodynamic and gravity potentials) and is hence irrotational, as postulated in the two-fluid model.  

To simplify our PDE system we postulate that the thermodynamic state does not depend on the 

relative composition and motion of the two fluids, which allows us to use standard thermodynamic 

relations (see Section 0), even though we understand the approximate nature of this approach [16]. 

Further assumptions and simplifications are summarized in chapter 3.2.1. The final explicit forms of these 

equations as functions of pressure, velocities and temperature are given in Table 3.1. 

In Chapter 4, we describe the main framework of the numerical code, called 3DHeliumSolver, 

developed to solve these equations [17]. We made use of parts of an existing one-dimensional code of 

Thermal, Hydraulic and Electric Analysis (THEA), whose PDE solver has been transformed to solve 

three-dimensional hydro- and thermo-dynamics problems. We based the enhanced code on the three-

dimensional Lagrangian finite element (FE) in space supplemented by a type of Beam-Warming algorithm 

in time. 

Despite our various approximations, solving our system of PDE of Helium II is a challenging task. 

Many numerical approaches have been developed by the research community for Helium II models and 

we examined several viable options.  The main difficulty in the integration comes from the nonlinearity 

terms inside the hyperbolic equations, corresponding physically to the vanishing viscosity of the super-
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fluid component of Helium II. These terms generate important instabilities that one has to address as part 

of any model. Following the common approach, we utilized an artificial diffusion and examined code 

behavior through the whole spectrum of the Peclet number Pe (inversely proportional to the coefficient of 

artificial diffusion), where “0” and “infinity” represent “pure diffusion” and “pure convection”, respectively. 

As expected, the solution is well behaved at low Pe, but increasing Pe values lead to worse instabilities 

and oscillations during the numerical approximation to the solution, as we illustrate in Section 8.2.  The 

physical phenomenon indicating this loss of regularity is the appearance of shocks (discontinuities) in the 

solution, as is often encountered in inviscid fluid flow simulations. On the other hand, we show that the 

use of finite difference (FD) algorithm with upwinding [18] in the context of a general class of finite 

element approximations results in a better behaved system, which in particular steady-state cases can be 

solved exactly. Henceforth (in this regime) we used the FE method augmented by the FD upwinding in 

3DHeliumSolver to stabilize the outcomes. 

The different form of the PDE is discussed and the scaling analysis permit to simplify the 

complete set of PDE obtained. 

In Chapter 5 we report on the results of our 3DHeliumSolver in several test conditions. Due to the 

complexity of modeling accurately Helium II flow behavior, a staged approach was necessary. Ultimately, 

we describe the results obtained using the 3DHeliumSolver for the case of Helium II.  In Section 5.5, we 

compare our approach with the methods, assumptions and variable selections of other Helium II 

simulations available in the scientific community. The propagation of the second sound and the thermal 

counterflow in Helium II has been simulated in 1-, 2-, and 3-dimensional space.  

 

1.2 Potential Application of 3DHeliumSolver to PIV Tech nique 

One motivation to support the generation of the three-dimensional numerical model for Helium II 

is driven by the need to help interpret experimental results obtained at NHMFL. Van Sciver, Zhang and 

Celik successfully observed the velocity distribution in a Helium II thermal counterflow using the Particle 

Image Velocimetry (PIV) technique. Since the normal fluid within Helium II has finite entropy, the PIV 
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technique is capable of tracking the trajectory of the normal velocity component. In their experimental set-

up, spherical particles were immersed in a Helium II bath to track the normal velocity component 

associated with heat transport [3]. In theory, if the net mass flow is zero, then the normal velocity, vn, is 

given by : 

 vn � 
	
� � � (1.1) 

where, s, is the entropy of the normal component, T the temperature andρ is the bulk density. Thus, any 

heat transfer is accompanied by flow of normal fluid. 

Large discrepancies, however, were found between the measured particle velocity and the 

theoretical normal fluid velocity, vn. A correction for the slip velocity estimated between the normal fluid 

and the tracer particles was not sufficient to explain their experimental results. To support their results, 

theoretical investigations of the motion of tracer particles in Helium II has been carried out by Poole et. al 

[19] and suggest that the full interpretation of their results would require a three-dimensional numerical 

model capable of simulating the implementation of a particle in a Helium II bath where thermal 

counterflow can be modeled. This topic and controversy represent an excellent future research possibility 

with the 3DHeliumSolver code presented in this dissertation. 
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2 PROPERTIES OF HELIUM  II 
 

2.1 Fundamentals of Helium II 

2.1.1 Historical Background 

Helium (He) was first discovered by the French astronomer Jules Janssen in a spectrum of 

sunlight during a total solar eclipse visible in India in 1868. He observed a yellow line in the spectrum of 

the sun that he attributed to the radiation of a previously unobserved chemical element. Joseph Norman 

Lockyer confirmed this discovery and named it “helium”, from the Greek “Helios”, meaning the Sun. 

Helium is the most common element in the Universe after hydrogen. In Earth’s atmosphere its 

concentration is only 5 ppm (parts per mil), while in natural gas from the Earth the concentration of helium 

varies from 0.4% to 8%. 

Helium was first liquefied in 1908 by the Dutch physist H. Kamerlingh Onnes at the University of 

Leiden [20]. This achievement gave him the possibility to test the thermophysical properties of metals 

immersed in a very low temperature fluid and in particular the behavior of electrical resistance as a 

function of temperature. This led, three years later, to the discovery of superconductivity when he 

observed the vanishing resistance of mercury as the temperature dropped below 4.15 K [21]. Onnes was 

awarded the Nobel prize for this discovery in 1913. 

In 1910 H. K. Onnes and L. Dana measured the latent heat and specific heat of liquid helium and 

observed that near maximum density something unexpected happens to helium, which within a small 

temperature range is perhaps even discontinuous. The shape of the specific-heat curve resembled the 

Greek letter λ, and the corresponding point was hence called the lambda transition. The lambda transition 

was identified as a discontinuity, and the transition temperature 2.17 K was named Tλ. Twenty-seven 

years after the discovery of superconductivity, in 1938, it was recognized that the most common helium 

isotope with atomic mass 4, 4He, undergoes a second order phase change when crossing the λ transition 

[22]. For temperatures above Tλ, 
4He is in the “normal” state, also called He I, and behaves as a 

Newtonian fluid. Below Tλ helium has remarkably different properties, behaving as a macroscopic 
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quantum fluid with non-Newtonian characteristics, highly increased fluidity and extraordinary heat 

transport capability. This state of helium is commonly called Helium II. 

In 1938, Kapitza and Allen and Misener independently reported no measurable resistance to the 

flow of Helium II through small capillaries with diameters of the order of 10-4 cm [23]. On the other hand, 

experiments using oscillating disks performed by Keesom and MacWood (1938) demonstrated the 

existence of a viscous drag, consistent with a viscosity coefficient not much less than that of helium gas. 

Therefore, it appeared as if Helium II were capable of being both viscous and non-viscous at the same 

time. A second example of the unique thermo-mechanical properties of Helium II is the fountain effect, 

consisting of a positive pressure head across a porous media induced by the heating of Helium II [24]. 

The two-fluid model described later in this chapter explains the apparent contradiction. Kapitza and 

Landau were awarded the Nobel prize for their work on Helium II. Since then, numerous experiments and 

studies on Helium II properties have driven our knowledge to where presently superfluid 4He has become 

a viable coolant for technological applications, in particular for high field magnets. 

Numerous fields including High Energy Physics (HEP), medical imaging, and energy storage 

today make use of high field, superconducting magnets cooled using superfluid 4He. In 1980’s, Tore 

Supra was the first large physics instrument to use a Helium II cryogenic system at 1.8 K [25]. In the 

1990’s, CEBAF was the first accelerator project using Helium II technology to cool superconducting RF 

cavities [26]. A yet more widespread use of Helium II for cooling high field laboratory magnets was built 

with Nb3Sn or NbTi and operated at 1.8 K. 

The Large Hadron Collider (LHC) at CERN (European Organization for Nuclear Research), 

Geneva, Switzerland, makes use of a large cryogenic capacity at 1.9 K for cooling the majority of its 

superconducting magnets around their accelerator ring [27]. Similar technology is planned for 

superconducting RF cavities used in future projects such as Project X at the Fermi National Accelerator 

Laboratory [28] or the European Spallation Source [29]. Finally, next generation NMR spectrometers, 

aiming at 25 Tesla fields and a resonating frequency above 1 GHz, will make use of low-temperature 

superconducting materials (Nb3Sn and Nb3Al) and will need to cool to Helium II temperatures to achieve 

their operating field. 
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2.1.2 Atomic and Nuclear Properties of Helium 

Two stable isotopes of helium exist in nature, with atomic mass 3 and 4, indicated by 3He and 

4He, respectively [30]. Gaseous 4He is extracted from natural gas wells and represents 5.3x10-6 of the 

atmospheric air. The lighter isotope, 3He composes less than 10-11 of atmospheric air and is mainly 

available as a by-product in the manufacture of nuclear devices. The two isotopes 3He and 4He have very 

different properties, both in their normal states (e.g. 3He has a lower boiling point and higher vapor 

pressure than 4He) as well as in their quantum, superfluid states described below. Unlike all other fluids, 

both helium isotopes remain liquid down to absolute zero, except under very high-pressure conditions 

(greater than 25x105 Pa). The persistence of the liquid phase can be explained by a combination of the 

weak inter-atomic forces and low atomic masses [31]. Only the isotope 4He undergoes the phase change 

from He I to Helium II as the temperature is lowered below the lambda temperature. This change of 

phase is not shared by the 3He isotope providing a conspicuous hint as to the reason of the appearance 

of the new 4He state. 

Indeed, the macroscopic quantum characteristics of Helium II can be understood in terms of the 

difference in the low temperature behavior of bosons and fermions. Bosons are particles with zero or 

integer values of spin, whereas fermions have half-spin values [32]. Pauli’s exclusion principle states that 

a given energy level, defined by energy, angular momentum and spin, can be occupied by only one net 

fermion. The exclusion principle does not apply to bosons, so that an arbitrary number of bosons can 

occupy a given energy level. Because of this property, a gas of non-interacting bosons can condense 

below a transition temperature TB, when thermal energy becomes sufficiently small. In this condition a 

substantial fraction of the total number of particles in the system occupies the state of lowest energy, 

called the ground orbital. This effect is called Bose-Einstein condensation. 

The atom of 4He is composed of 2 neutrons, 2 electrons and 2 protons, each of spin ½, so it has 

an even number of particles of spin ½, and is therefore a boson. As such, it can condense, forming an 

ordered liquid. The condensation temperature TB for liquid 4He can be estimated from theoretical 

considerations and is of the order of 3 K, i.e. close to the experimentally measured value for T λ [12]. 
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Hence, below T λ = 2.17 K, a substantial fraction of the atoms of 4He are in the condensed state, resulting 

in the visible, macroscopic quantum properties of Helium II. 

The atom of 3He, on the other hand, is composed of 1 neutron, 2 electrons and 2 protons, so it 

has a half-integer spin and is a fermion. In this case the Bose-Einstein condensation cannot take place, 

which explains why 3He does not become a superfluid below 2.17 K. Nevertheless, at low temperatures 

(below 1 K), 3He has unique behavior because its properties are governed by Fermi statistics. In fact, in 

contradiction with expectations, it has been found that 3He also becomes a superfluid when cooled below 

about 3 mK. The quantum behaviour in this case has a different origin, which is similar to the mechanism 

that leads to a pairing of electrons into Cooper pairs below the critical temperature in electrical 

superconductors. The dilution and magnetic properties of 3He have been used to attain temperatures in 

the mK range which are instrumental for applications like the Cryogenic Dark Matter experiment (CDMS) 

for which the germanium detector must be cooled to 10 mK [33]. The isotope 3He is much more costly, 

and less commonly used, and is more difficult to handle than 4He. Hence, in spite of the interesting 

properties and applications for 3He, this thesis focuses exclusively on the superfluid properties of 4He. 

 

2.1.3 Helium Phase Diagram 

As for any other fluid, helium is best characterized by examining its pressure-temperature (p,T) 

state diagram [3]. The phase diagram of 4He is shown in Fig. 2.1. This diagram shows remarkable 

differences compared to common fluids. A peculiarity of helium is that it has no triple point for the 

coexistence of solid, liquid and vapor, as found for most substances. As mentioned previously, the liquid-

vapor curve can be followed from the critical point (T = 5.2 K, p = 2.23x105 Pa) down to the absolute zero 

without any appearance of a solid. The solid phase appears only at a pressure larger than 25 105 Pa. This 

makes 4He the ideal, and only, coolant for low-temperature superconducting applications. The 

lambda point (Tλ = 2.172 K, p = 5,039 Pa) is a triple point at which the liquid He I, liquid Helium II, and 

vapor coexist. A second triple point exists where the solid is in equilibrium with the He I and Helium II 

(T = 1.76 K. p = 29.7x105 Pa). The curve connecting the two triple points, the so called lambda line, 

separates the two forms of liquid 4He, normal-fluid (He I) and super-fluid (Helium II).  
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Figure 2.1: Phase diagram of 4He  
 

The distinction between liquid, vapor and mixed (liquid + vapor) phases is best examined in the 

temperature-entropy diagram of Fig. 2.2. Isenthalps and isobars in this diagram are used to analyze 

thermodynamic processes in cryogenic systems, e.g liquefaction of cryogenic fluids or refrigeration 

thermo-cycles. Two isobars for 4He are shown at 0.1 MPa (normal conditions) and 2,000 Pa (a common 

working point for the production of saturated Helium II). The lambda and critical points are indicated in the 

plot. The saturation curve, the dome passing through the critical point, separates the one-phase from the 

two-phase domain of the fluid. The region on the left of the dome is the pure liquid region. Vapor is found 

on the right of the dome, while the liquid and vapor coexist in the region underneath the dome. 

 

Figure 2.2:  4He temperature-entropy diagram  
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2.1.4 Thermo-physical Properties of Helium II 

In phase changes from He I to Helium II across the lambda transition most thermo-physical 

properties show strong variations or discontinuities. Fig. 2.3 shows the viscosity, η, of 4He at 0.1 MPa, in 

units of micro-Poise. The viscosity change of the normal component is the primary parameter that marks 

the transition from normal to superfluid 4He. The viscosity of helium in the normal state, i.e. with 

temperatures and pressures to the right of the λ line, is small compared to normal liquids but does not 

show anomalies in its temperature dependence. Conversely, the viscosity of Helium II II, i.e. at 

temperatures and pressures to the left of the λ line, is less than 10-7 of that of a normal gas.  

 
Figure 2.3: Viscosity of 4He at 0.1 MPa versus temperature. The viscosity of the superfluid 

component drops ideally to zero below Tλλλλ    (2.17 K) 
 

An interesting feature of the viscosity drop obtained by cooling is the possibility to reach high 

Reynolds number at moderate flow velocities and mass-flows. For this reason the use of very low 

temperatures is of interest in aerodynamics because it allows the design of wind tunnels with high 

Reynolds numbers and Mach numbers that cannot be achieved at ambient temperature. For example, the 

Cryogenic Helium Experiment Facility (CHEF) at National High Magnetic Field Laboratory (NHMFL) is 

used to study the influence of the friction factor for Reynolds number exceeding 107[34] 

The amount of energy needed to raise the temperature of a kilogram of helium by one degree 

(the specific heat, Cp) shown in Fig. 2.4 is very large for both He I and Helium II. At the lambda transition, 

the heat capacity is strongly dependent on temperature having a peak the lambda transition. Compared 
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to other materials in the same temperature range, the helium Cp is higher by several orders of magnitude. 

As an example, Copper has a Cp of 0.03 J/kg - K at 2 K, while the Cp of Al at the same temperature is 

approximately 0.11 J/kg - K. The specific heat of Helium II just below Tλ at 0.1 MPa is of the order of 

12,400 J/kg - K, dropping to approximately 2,900 J/kg - K in the normal state. The lambda transition, first 

observed by H. K. Onnes and L. Dana is the sharp peak near 2.17 K. The implication of the large heat 

capacity is that at the phase change from Helium II to He I a large amount of heat can be absorbed under 

constant temperature conditions. This feature is used to provide a heat sink at nearly constant 

temperature, which is often necessary to stabilize superconducting cables against unforeseen heat 

dissipation. Note that the heat capacity decreases significantly with temperature below the lambda 

transition, thus making operation at temperatures much below Tλ  less effective. 

 

Figure 2.4: Specific heat of 4He at 0.1 MPa 
 

 

In addition to Helium II’s specific heat being a unique property of liquid 4He, its latent heat of 

vaporization also presents a very large advantage in cryogenic systems. The latent heat of vaporization of 

Helium II in the liquid phase of helium permits larger heat transport than thoughout the vapor phase at 

temperatures higher than 5 K. The latent heat of vaporization represents the energy required to transfer 

one kilogram of liquid helium to its gaseous state. It is representative of the intermolecular bonds 

associated with the formation of liquid. Helium II’s latent heat of vaporization at 1.9 K is 23 kJ/kg and 

decreases rapidly to zero around 4 K. Although this value seems low compared to the latent heat of 
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vaporization of classical fluids (used as coolants at room or higher temperatures, e.g., for water the latent 

heat of evaporation is 2,258 kJ/kg) it must be noted that only helium has a liquid phase in the temperature 

region compatible with the superconducting state of technical materials. The low absolute value for liquid 

helium is in any case appropriate for the operation of cryogenic systems that are optimized by nature to 

minimize heat loads at the cold end. As He I and Helium II have similar latent heats, it is possible to use 

either for cooling based on vaporization. 

 

2.1.5 Heat Transfer in Helium II 

Helium II is of technical interest for the practical applications discussed in the introduction mainly 

because of its superior heat transfer characteristics. For this reason the helium flow conditions considered 

in this research are those associated with the typical operation of Helium II as a coolant. Three aspects 

must be considered when examining the properties of the flow of Helium II in relation to heat transfer [35]. 

As for any other fluid, the flow field in Helium II is influenced by heat flow, especially when the thermo-

physical properties have a strong non-linear dependence with temperature as discussed above. In 

addition, in the case of Helium II the picture is complicated by the fact that heat transfer, both in steady-

state and transient conditions, has unusual characteristics originating from the mutual interaction of the 

normal- and super-fluid components. Finally, heat transfer from a heated wall to Helium II is not governed 

by classical thermal boundary layer theory and heat transfer correlations, as described below.  

In practice, cryogenic applications require heat transfer from the system while maintaining 

cryogenic temperatures. In this process, all aspects of heat transfer take place in a chain that includes 

heat removal from the system to the helium and transport in stagnant or forced flow Helium II. The 

importance of a precise knowledge of the heat transfer characteristics for practical applications can be 

inferred from the analytical and experimental efforts devoted to cryogenics for superconducting magnets 

in the Interaction Regions (IR) of the Large Hadron Collider (LHC) [36]. The magnets in the IR regions are 

cooled by means of a heat exchanger made of a corrugated copper tube. Saturated Helium II flows inside 

of the exchanger tube, vaporizing along its length and absorbing the energy deposited in the static bath of 

Helium II that surrounds the rest of the magnet at 0.1 MPa. The heat transfer from the helium bath, which 
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maintains the superconducting magnet at operating temperature, to the saturated helium in the heat 

exchanger tube is a key element in the design of the cryogenic system. 

 

2.1.5.1 Stagnant Helium II – An early expression 

In the domain of interest for the work presented here, the heat transfer in Helium II is accurately 

described by the Gorter-Mellink Eq. 2.9 of Section 2.2. This relation was experimentally verified by 

several teams of researchers during the 1970’s. The early experimental approach taken by a French 

group at CEA/Grenoble has provided practical data useful for engineering design [37]. Their results for 

heat transfer in Helium II apply to a channel of length, Length,  and cross sectional area, Area, filled with 

Helium II at 0.1 MPa and heated at one end with a total power, q&. The ends of the channel are 

maintained at cold and warm temperatures Tc and Tw. In this scenario, the steady-state heat transport in 

Helium II was found to be well approximated by [38] : 
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where X(T) is the function shown in Fig. 2.5, obtained fitting experimental data. This function is related to 

the f(T) used in Eq. 2.13 of Section 2.2, and can be expressed by : 

 [ ]{ }5.2)16.2(31520)( TeTX −⋅−−=  (2.2) 

 

Figure 2.5: Heat conductivity function X(T) as obtained from experimental results of heat t ransfer in 
Helium II at 1 atmosphere [37]. 
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It is interesting to compare heat transport in Helium II and other conducting materials used in 

cryogenic applications. To do this we compute the thermal conductivity equivalent to the heat transported 

in Helium II under the same temperature gradient. Based on equations (2.7) and (2.8), a 1-m long Helium 

II channel at 2 K is capable of transporting heat with an equivalent thermal conductivity of 2 kW/m - K. 

Copper and Aluminum, two of the best conducting materials, have a thermal conductivity in the range of 

0.2 to 0.3 kW/m - K at 2 K. Thus the conductivity of Helium II is an order of magnitude better. 

The large heat transport capability of Helium II is responsible for a drastic change in the 

macroscopic behavior of a helium bath cooled by pumping along the saturation curve of the temperature 

entropy diagram (see Fig. 2.2) once the temperature descends below the lambda point. Above Tλ, the 

heat is transported directly by mass convection and the He I bath is agitated by the production of large 

bubbles as He I boils-off. A sudden cessation of boiling occurs below Tλ, owing to the fact that heat is 

carried by internal convection without the need of the formation of helium bubbles at the heated surface. 

 

2.1.5.2 Forced Flow of Helium II 

Inducing a flow and thus taking advantage of the energy transfer through mass convection can 

further augment the large heat removal capability of Helium II. It has been shown that in the case of 

forced flow, the Gorter-Mellink mechanism is still present, along with the energy convection induced by 

the mass flow [3][39]. In a simple one-dimensional channel of length, cross-sectional area, and heated 

along its length with a total power ( )xq& , the steady-state temperature profile is given by [30] : 
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This differs from the equation for a normal fluid by the presence of the additional term due to turbulence-

modified internal convection [40]. The presence of this term causes a strong deviation of the temperature 

profiles from those expected for forced convection in normal fluids.  
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An example of the temperature profiles obtained at different forced flow rates in a channel of 

Helium II under constant heating power are shown in Fig. 2.6. In this measurement the pipe was heated 

in its center by a short heater. At zero flow velocity the temperature profile would resemble the one 

expected for pure conduction, i.e. perfectly symmetric and linear. The lack of symmetry visible in Fig. 2.6 

for the case v=0 is due to an experimental difference in the inlet and outlet temperature conditions in the 

channel.  In the presence of a forced flow the temperature profile is displaced in the downstream direction 

of the flow, approaching the ideal temperature distribution for a normal fluid (a step in temperature located 

at the heater) for large flow velocity. The reason is that the energy transport through mass convection (the 

first term in Eq. 2.9 increases with the forced flow velocity, while the internal convection (the second term 

in Eq. 2.9) does not depend on the flow velocity. At high enough velocity, the first mechanism mass 

convection and internal convection offset each other upstream of the heater, while they add to one 

another downstream of the heater as shown in Fig. 2.8 by the increasing asymmetry of the temperature 

profiles as the velocity increases. Thus, for the case of forced flow, the direct measurement of the velocity 

field could be used to determine the relative importance of the two heat transfer mechanisms. 

 

 

Figure 2.6: Temperature profiles as measured in a f orced flow of Helium II at different velocities, 
redrawn from [39] 
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2.1.5.3 Kapitza Resistance  

In Helium II the thermal resistance at the solid-fluid interface dominates heat transfer from a solid 

boundary to the bulk fluid. At cryogenic temperatures, and for small temperature differences, ∆T, the 

thermal resistance at the solid-fluid interface is due to the acoustic mismatch in the phonons at the 

transition between the two media [3]. Kapitza noted the phenomenon in 1941 during an experimental 

investigation of Helium II [22]. While studying the influence of heat transfer in capillaries, he first observed 

a temperature jump between Helium II and wall, which depended on the thermal heat flux across the 

interface. The corresponding thermal conductance was observed to vary as T3, between Tλ  and less than 

1 K. It is experimentally determined from the ratio of the temperature difference across the interface, ∆T, 

and the heat flux at the interface. The Kapitza conductance, hK, is defined as : 3T
T

q
hK α=

∆
=

 Area

&

 (2.4)  

One of the materials for which heat transfer to Helium II has been studied is copper. This is 

because of the high thermal conductivity of copper which is advantageous for electrical and thermal 

cryogenic applications. In addition, the high thermal conductivity of copper permits the measurement of 

the temperature of the solid side of the interface accurately and rapidly. Typical values of α for copper in 

contact with Helium II (in W/m2-K) are between 400 and 900, depending on the surface morphology and 

cleaning [3]. Note that even though T is quite small, hK can reach values one order of magnitude larger 

than typical heat transfer coefficients found for normal fluids. As an example, the value of the Kapitza 

heat transfer coefficient for copper in contact with Helium II at the lambda temperature are around 8,000 

W/m2-K, compared with 500 to 1,000 W/m2-K for a forced flow of normal liquid He I and range to values of 

a few 1,000 to a few 10,000 W/m2-K for boiling water and liquid metals. 

Detailed knowledge of heat transfer from the solid wall to Helium II is of primary importance for 

stability and design of the cooling system for superconducting magnets, e.g. the Kapitza resistance was a 

key parameter determining the maximum heat transfer capability of the Inner Triplet - Heat Exchanger 

Test Unit (IT-HXTU) noted earlier [41].  
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2.2 Characteristics of the Two-fluid Model  

The two-fluid model, introduced by Tisza in 1938 and completed by Landau, is presently the most 

effective phenomenological theory for predicting the behavior of Helium II [11]. This empirical model 

makes the assumption that Helium II consists of two interpenetrating fluid components. One component, 

called normal-fluid, has density nρ , finite viscosity η, entropy s, and behaves like a conventional viscous 

fluid. The other component, called superfluid, has density sρ , no viscosity, behaves like an ideal inviscid 

liquid and carries no entropy. In the framework of the two-fluid model, Helium II is a mixture of the normal-

fluid and the superfluid components. At the lambda transition the mixture consists of the normal 

component only, while at absolute zero the mixture consists of the superfluid component only [42]. 

The development of this model was initially stimulated by the observation that Helium II can 

behave as if it were viscous and non-viscous at the same time. It was further thought that the presence of 

the two separate components could be associated with Bose condensation, the superfluid fraction being 

the condensed atoms, and the normal-fluid fraction identified with the excited atoms at energies above 

the ground orbital. This view however proved to be an oversimplification, as it can be shown theoretically 

that the fraction of atoms that can condense in a liquid such as Helium II is at most 10 % of the total. This 

means that the condensed fraction cannot be directly identified with the superfluid component of the two-

fluid model. 

In fact, although the two-fluid model postulates that Helium II behaves as a mixture of two fluids, 

the fluids themselves are physically indistinguishable and cannot be separated. In this respect the name 

of the two-fluid model is shorthand for describing the complex quantum interactions among the He atoms 

and lattice vibrations (phonons and protons) governing the macroscopic behavior of Helium II. More 

correctly, each of the two components in the two-fluid model should be regarded as different quantum 

states of the same atom, all atoms in Helium II being however identical. The quantum states are 

superposed and coexist, such that each atom can behave at the same time as a normal- as well as a 

super-fluid. The link to two-fluid model is that the probability of the existence of each state corresponds to 

the empirical composition rules of the fluid mixtures that are detailed below. In spite of its oversimplified 
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nature, the two-fluid model has proven to be very effective in predicting and interpreting the behavior of 

Helium II. For this reason in the following discussion we still use the concept of separated normal- and a 

super-fluid components, keeping in mind the basic limitation of this approach. 

The total density of Helium II, ρ, is the sum of the densities of the two components and is given by 

: 

 ns ρρρ +=  (2.5) 

Fig. 2.7 shows the normalized density changes as a function of temperature, i.e. the ratio of the 

normal and superfluid density to the total density [12]. This ratio can be obtained either from 

measurements of the speed of sound propagation in Helium II or from the Andronikashvili experiment, 

consisting in a measurement of the period of oscillation of a pile of disks suspended on a torsion fiber and 

rotating in a bath of Helium II [43]. 

 

Figure 2.7: Density of Helium II – ratio of normal and superfluid densities in Helium II 
 

Similar to the mass density, the total momentum density of Helium II, j, is the sum of the momentum 
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 nnss ρρρ vvvj +==  (2.6) 

where v is the bulk fluid velocity, while vs and vn are the velocities of the super-fluid and normal-fluid 

components respectively. The motion of the normal-fluid component is governed by an equation of the 
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Navier-Stokes type, containing however an additional momentum source term proportional to the 

temperature gradient and due to the interaction among the two fluid components [13]. In contrast, the 

motion of the superfluid component differs basically from that of any normal fluid because of its zero 

viscosity. A direct consequence is that stable irrotational flow patterns can exist, for which : 

 0 v =×∇ s   (2.7) 

resulting in the absence of classical turbulence for the superfluid [44][45].  

In addition to the irrotational behavior as expected for an inviscid fluid, situations can arise when 

vortices can be generated in the superfluid component [46]. This is the case when Helium II flows in a 

multiply connected domain, i.e. containing a physical ”hole”. In this case the condition (3) does not 

necessarily prevent the flow around the hole. In fact, it can be shown that a persistent superfluid flow can 

exist if the circulation of the superfluid velocity along a path that encircles the hole has discrete values. 

These values are multiples of the so-called quantum of circulation. In practice the hole in the flow domain 

does not need to be provided by a physical solid boundary. For particular flow configurations, such as a 

rotating cylindrical bucket containing Helium II, holes appear spontaneously also in a simply connected 

domain [3]. The holes consist of a central normal fluid core completely surrounded by superfluid. These 

quantized vortex lines organize themselves in a regular geometric pattern. A gradient in the spatial 

distribution of the quantum vortices explains the possibility of observing, in spite of (3), a net circulation in 

Helium II. 

If we consider Helium II at rest, i.e. when j = 0 and v = 0, one of the most striking consequences 

of the momentum addition rule (2) is that the velocities of the normal- and superfluid component nv and 

sv  can still be different from zero provided that they are related by : 

 
s

nn
s ρ

ρ v
v −=  (2.8) 

In other words, an internal convection of the superfluid and normal-fluid components can take place 

even if the bulk Helium II flow is zero. 
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The possibility of internal fluid convection (associated with the presence of a momentum source 

proportional to the temperature gradient in the motion equation of the normal-fluid and with the 

temperature dependence of the density of each fluid component) makes heat and mass transfer in 

Helium II inseparable. This is indeed the reason for the thermo-mechanical effects (e.g.,. the fountain 

effect mentioned earlier). The main heat transport mechanism in Helium II, which is often referred as the 

counterflow heat exchange, is also associated with the transfer of mass among the two fluid components 

and is particularly important for the later discussion. We consider a channel of stagnant Helium II, shown 

schematically in Fig. 2.4, in which one end is heated (the warm end) and the other end is kept at constant 

temperature by a heat sink (the cold end). Normal-fluid flows from the warm end to the cold end of the 

channel with a velocity vn driven by temperature gradient [3]. Since the normal fluid has finite entropy, the 

displacement of the normal fluid component is associated with heat transport. If the net mass flow is zero, 

then the heat transported, q& [W/m2] is given by [47][48] : 

 nv ρ s Tq =&  (2.9) 

where, s, is the entropy of the normal component. Thus, any heat transfer is accompanied by flow of 

normal fluid.  

Under very small heat fluxes, the relative motion of the two fluids takes place without interaction, 

in the so-called laminar regime (parallel flow lines). Of course by Poiseuille’s formula for flow of a viscous 

fluid in a channel, we expect : 
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η
β

v  (2.10) 

where ∆X is the length of the channel, ηn is the viscosity of the normal fluid, and β is the constant 

depending on the geometry of the channel. Substituting into (5) leads to : 
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n ∆
∆

=&  (2.11) 
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Finally, using the two-fluid model and the internal energy for the mass of liquid helium, it can be 

shown that ρ s ∆Tp =∆ , which is known as the thermo-mechanical effect, or fountain effect. 

Substituting this into (7) results in : 

 �	 � �� ���� �
nη

∆�
∆�  (2.12) 

Thus, the heat flux is proportional to the temperature gradient, or equivalent to the pressure 

gradient. Note also that in this regime the temperature gradient is governed by the interaction of the 

normal-fluid with the walls of the tube through the parameter β. 

The normal-fluid component transports heat from the warm end to the cold end. By extrapolation, 

we can picture this phenomenon as natural convection, albeit without gravity.  

Under the constraint of zero bulk motion, no net mass displacement can take place and the total 

density must remain the same everywhere in the channel. The only way to achieve this is to have a flow 

of superfluid from the cold end to the warm end, with a velocity vs given by (2.4), that guarantees at the 

same time that the momentum density is zero everywhere (i.e. the helium remains stagnant). At the warm 

end the superfluid component is converted to the normal state by the fact that the extra excitation due to 

the heat gives the superfluid enough energy to change the phase. At the cold end the normal-fluid 

component is converted to the superfluid state at the same time, while exchanging heat with the heat 

sink. 

 

super-fluid component 

normal-fluid component 

cold end warm end 

Heater 

 

Figure 2.8: Helium II counterflow heat exchange sch ematically represented as internal convection of 
the normal- and superfluid components 
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In summary, heat transport in stagnant Helium II can be described within the frame of the two-

fluid model by a dynamic flow of entropy carriers, as opposed to heat conduction as it is the case for 

normal substances for which little heat can be transported by a static fluid. For this reason the counterflow 

heat exchange is also often referred to as internal convection. It is finally important to stress the fact that 

the internal convection mechanism in a Helium II bath takes place in the presence of a heat flux even 

without experiencing macroscopic motion. 

At heat fluxes of technical interest (above 1 kW/m2) and for most practical channel geometries the 

normal-fluid becomes turbulent and the interaction between the two moving components causes an 

internal viscous drag between the normal-fluid and the superfluid. This interaction is also known as the 

Gorter-Mellink mutual friction mechanism [13]. In this case the motion of the normal component is no 

longer governed by equation 2.6. The Gorter-Mellink mutual friction term in the momentum balance for 

the superfluid component leads to a strongly non-linear energy transport, in contrast to the linear 

dependence implied by equation 2.8. A complete derivation of the normal fluid velocity in the turbulent 

regime, taking into account the Gorter-Mellink mutual friction, is rather long and details can be found in 

[39]. It is customary to write the associated heat flux (in one dimension) as follows : 

 
dx

dT

Tf
q m

)(

1
=&  (2.13) 

where the coefficient, m, and the function f(T)-1 are in practice determined empirically from heat transfer 

measurements. Typically we use m=3. The function f(T)-1 behaves like a thermal conductivity, meaning 

that the fluid property controls the temperature gradient in the presence of a heat flux.  We has been 

shown that : 
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Tf

s

nGM

ρ
ρ

=
 

(2.14) 

The main difference between classical heat conduction and counterflow heat exchange is in the 

functional dependence of the heat flux on the temperature gradient. Classical conduction heat flux and 

laminar flow Helium II heat flux (8) are proportional to the temperature gradient, while for turbulent 
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counterflow heat exchange in Helium II the heat flux depends on the temperature gradient raised to the 

power 1/3 (2.9). 

Similarly, we could express this quantify as a function of the temperature and pressure : 
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The function f(T)-1 represents the effective thermal conductivity function and was fitted by Kashani 

et al. [39] . Fig. 2.8 displays f(T)-1 for the atmospheric condition and for the temperature range of interest.  

 

 

Figure 2.9: Effective conductivity function f(T)-1 

 

Practically speaking, if Tc is the cold temperature applied to the inlet surface and Tw is the warm 

temperature applied to the outlet surface of the channel, we can now approximate the heat transported by 

the Helium II in a steady-state by : 
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From the above equation and Eq. 1, we can estimate the normal component velocity, vn. as 

follows :  

 vn � 
 	
� � � (2.17) 

Knowing the total fluid density, ρ, we can also estimate the normal component density, ρn, as 

follows [3] :     
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(2.18) 

Finally, we consider the thermal counterflow phenomena, where a temperature difference, 

caused by the application of a heat flux, drives the motion of the superfluid velocity component against 

the normal velocity component. Since the bulk velocity is zero, the expression for the superfluid velocity 

component, vs, is : 

 
s

nn
s ρ

ρ v
v −=  (2.19) 

These expressions make it possible to estimate the main quantities used to monitor the behavior 

of He II.  
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3 MATHEMATICAL  FORMULATIONS  FOR HELIUM II  
 

In this Chapter we derive a system of partial differential equations that is as complete and 

consistent as practical, and which is used for a 3-D solution of the flow of Helium II. In this process we 

necessarily make approximations, and justify them as we proceed. The solution has the form a general 

vector PDE, where in particular pressure and temperature, the main drivers of the flow, appear as explicit 

state variables. 

 

3.1 System of Partial Differential Equations for the Tw o-Fluid Model  

We base our discussion of the equations governing the hydrodynamics of He II on the two-fluid 

model discussed extensively in Section 2.2. Here we take a macroscopic approach to the conservation 

equations, assuming local thermodynamic equilibrium, so that the state of He II as well as that of each of 

the two fluid components can be described by two independent state variables (e.g. pressure p and 

temperature T). This assumption is not necessarily verified in all conditions, and we will discuss later the 

applicability of the assumptions made. 

The mass, momentum and heat transfer of He II is interpreted in terms of the motion of two 

independent fluids, a normal and a superfluid. The superfluid component is non-viscous, and carries no 

entropy, while the normal component is viscous, with dynamic viscosity η, and carries a specific entropy 

S.  

The total mass density of the fluid is given by the sum of the densities of each component : 

 ρ = ρ n + ρ s  (3.1) 

The ratio of the mass densities of each fluid component to the total density of He II is a function of 

temperature and pressure. At zero temperature the density of the normal fluid is zero, while the superfluid 

density is equal to the total density. At the lambda point the normal density equals the total density, and 

the superfluid density is zero. 
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Similarly the momentum density of the He II can be divided in two parts, one part due to normal 

fluid motion and the second due to superfluid motion : 

 ρv = ρ n v n + ρ sv s  (3.2) 

Finally we define the total energy density e of the mixture of the two fluids as follows : 

 
e = i +

ρn

2ρ
vn

2 +
ρs

2ρ
vs

2 (3.3) 

where i is the internal energy density and the second and third term are the kinetic energy density 

associated with the normal and superfluid motions, respectively.  The equations of motion for the two-fluid 

mixture are obtained from conservation balances which are applied to each component. 

 

3.1.1 Mass Balance 

We consider the mass balance first. The mass conservation for each fluid is given by [15]: 

 

∂ρn

∂t
+ ∇ ⋅ ρnvn( )= m  (3.4) 

 

∂ρs

∂t
+ ∇ ⋅ ρsvs( )= −m  (3.5) 

where the m is the rate of generation of normal fluid mass in a differential volume, while –m is the rate of 

loss of superfluid mass in the same differential volume. In other words m is the rate at which normal fluid 

is created from superfluid. The conservation equation for the total mass is obtained by adding equations 

3.4 and 3.5, and using the definitions of equations. 3.1 and 3.2 : 

 

∂ρ
∂t

+ ∇ ⋅ ρv( )= 0 (3.6) 

 

3.1.2 Momentum Balance 

To derive equations of motion for the superfluid and normal components we start by postulating 

the conservation of total momentum carried by the two components, i.e. : 
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( ) ( ) gvvvv
vv

ρτρρ
∂

ρρ∂
+⋅−∇=∇++⋅∇+

+
p

t sssnnn
ssnn  (3.7) 

where g is the acceleration of the gravity field and τ  is a stress tensor, that  depends only on the normal 

fluid and can be written as follows :  
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3
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The momentum equation for the superfluid is [15] : 

 
gFvv

v
stsss

s
s t

ρρ
∂

∂
ρ +=Φ∇+∇⋅+  (3.9) 

where Φ is a potential function, defined in equation 3.12, and Ft is the force associated with turbulence 

(e.g., mutual friction), and appears only when the relative velocity between the superfluid and normal fluid 

components is larger than a critical value. Although the above balance is apparently in non-conservative 

form, and would hence seem inappropriate to describe the motion of the superfluid, Khalatnikov [13] and 

Roberts and Donnelly [15] argue that this equation is fundamental because in the absence of turbulence 

(i.e. when Ft = 0) superfluid motion is driven by the divergence of potential functions (thermodynamic 

potential Φ and the gravity potential) and is hence irrotational. This is no longer the case in the presence 

of turbulence. 

The equation for the motion of the normal-fluid component is derived by subtracting equation 3.9 

from the conservation of total momentum (see Eq. 3.7). Using the continuity equations for each 

component (Eqs. 4 and 5) we easily obtain, 

 
( ) wgFvv

v
mp

t ntsnnn
n

n −+−⋅−∇=Φ∇−∇+∇⋅+ ρτρρ
∂

∂
ρ  (3.10) 

where we have introduced the difference of normal and superfluid velocity w : 

 sn vvw −−−−====  (3.11) 

The thermodynamic potential Φ is derived by Roberts and Donnelly [15] in the general case, and 

is given by  
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Φ = i +
p

ρ
− sT −
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 w

2
 (3.12) 

It is important to note that this depends not only on the usual thermodynamic state variables 

(internal energy i, pressure p, density ρ, entropy s and temperature T), but also on the relative velocity of 

the normal and superfluid components, as well as the normal fluid density. Furthermore, Roberts and 

Donnelly derive differentials of the internal energy and the potential Φ, given by [15] : 

 

di =
p

ρ2 dρ + Tds+
w2

2
d

ρn

ρ

 

 
 

 

 
  (3.13) 

 

dΦ =
1

ρ
dp − sdT −

ρn

2ρ

 

 
 

 

 
 dw2

 (3.14) 

Using now Eq. 3.14 in the momentum balances for the superfluid and normal fluid components 

we arrive, after simple algebra, with the following equations : 
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For convenience, we can use the continuity Eqs. 3.4 and 3.5 and write a conservation balance for 

the momentum of each component : 

 

∂ ρnvn( )
∂t

+ ∇ ⋅ ρnvnvn( )+
ρn

ρ
∇p + ρss∇T +

ρsρn

2ρ
∇w 2 = −∇ ⋅ τ − Ft + ρng + mvs (3.17) 

 

∂ ρsvs( )
∂t

+ ∇ ⋅ ρsvsvs( )+
ρs

ρ
∇p − ρss∇T −

ρsρn

2ρ
∇w 2 = Ft + ρsg − mvs (3.18) 

In the two sets of equations above the first and second terms on the left hand side are the 

acceleration terms. The third term is the force due to the pressure gradient. The fourth term is the 

pressure originated by the thermo-mechanical effect, which demonstrates how a temperature gradient 
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can cause a counterflow in the mixture. The fifth term originates from mass exchange among the two 

fluids in He II. It is important to note that the terms can differ by orders of magnitude. For small 

accelerations, and modest Mach numbers, the thermomechanical and the turbulent force terms tend to 

dominate the balance in Eqs. 3.15 and 3.16 (or Eqs. 3.17 and 3.18). 

At this point it is also interesting to note that the effect of the transformation of superfluid into 

normal fluid, and vice versa, produces a term (m w) in the normal fluid equation Eq. 3.15, but not in the 

superfluid equation Eq. 3.16. This is a consequence of the assumption of conservation of total momentum 

Eq. 3.7 and of irrotational superfluid flow Eq. 3.9. Indeed, the form presented here is different from the 

one obtained by Ramadan and Witt [49]. The reason is that their starting assumption was of momentum 

conservation in each species, which resulted in the appearance of mass exchange term both for the 

normal as well as the superfluid non-conservative equations. 

 

3.1.3 Energy Balance 

We turn now to the equation of energy conservation. Khalatnikov [13] uses the fact that for 

irreversible motion the entropy is conserved to write a balance that can be used in place of the energy 

conservation equation : 
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This balance must be modified in case of internal dissipation and external heat sources. In fact, 

the direct use of entropy is not convenient in the solution of the equation of motion. A different form, 

derived from the conservation of total energy density, is given by Roberts and Donnelly [15] : 
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The first two terms on the left hand side of Eq. 3.20 represent the change in total energy density, 

i.e. the sum of the internal energy density and the specific kinetic energy of the two flows. It is possible to 
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simplify the energy balance by subtracting the kinetic energy balance from Eq. 3.20. This is obtained 

taking Eqs. 3.17 and 3.18, multiplying each by vn and vs, respectively, and by applying the property : 
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The kinetic energy balance resulting from the addition of the energies of each component is: 
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Subtracting the above balance of mechanical energy from the total energy balance (Eq. 3.20) we 

obtain the following equation : 
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  (3.23) 

A final modification is to subtract the total continuity equation. Eq. 3.6 multiplied by i, leading to 

the final form for the conservation of internal energy : 
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We note that several terms in Eq. 24 are non-standard. The term ( )wsT sρ⋅∇ represents an 

internal heat convection through entropy transport. The term(s) 

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the transformation of a superfluid into normal fluid and vice versa. Finally, the term wF ⋅− t  represents 

the internal energy dissipation associated with turbulence. 
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3.1.4 Closure of the PDE System 

In summary, the two-fluid model is completely described by Eq. 3.6 (total mass balance), Eq. 3.15 

(normal fluid momentum balance), Eq. 3.16 (superfluid momentum balance), and Eq 3.24 (internal energy 

balance). In addition we require a suitable state equation, providing all thermodynamic quantities as a 

function of two state variables. As indicated already, we choose pressure and temperature as the state 

variables, and the state equation required is therefore in the form : 

 ρ = ρ p,T( ) (3.25) 

from which the other state variables are derived, and in particular : 

 

 ρn = ρn p,T( )     (3.26) 

  i = i p,T( ) (3.27) 

  s = s p,T( )         (3.28) 

 

Constitutive relations are also needed for all thermophysical quantities (e.g. viscosity or thermal 

conductivity). We assume that these are similarly available as a function of pressure and temperature, i.e. 

; 

 η = η p,T( ) (3.29) 

 k = k p,T( ) (3.30) 

Additionally, suitable initial and also boundary conditions are needed for a unique flow field to 

exist. We note finally that the form of the turbulent force has also not yet been specified. Although in 

principle any form is viable at this stage, a suitable approximation was found by Gorter and Mellink for the 

case of counterflow [14]. 

3.2 Expressing Partial Differential Equations in ( p, vn, vs, T) Variables  

The numerical solution of the equations derived in the previous section is by no means trivial. The 

equations are complex, involve terms that are non-standard, and also contain terms that largely dominate 
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the balances, e.g. the thermomechanical force or the mutual friction in the momentum balances. For this 

reason it is convenient to rearrange them and write them in a simplified form where pressure, velocities 

and temperature appear explicitly as variables in the derivatives. We refer to this choice as the (p, vn, vs, 

T) form of the PDE system. 

 

The main advantage of this is that these variables are leading order in all dominating terms of the 

balances, and treating them implicitly in the solution algorithm will largely improve the stability of the 

integration. To modify the equations as desired, however, we make the assumption that the 

thermodynamic state is independent of the composition and relative motion of the mixture of the two 

fluids. As shown by Roberts and Donnelly [15], this is not exact. Indeed, for the two-fluid system the 

internal energy i and thermodynamic potential Φ depend on the relative motion of the two fluids, as is 

apparent from the differentials of Eqs. 3.13 and 3.14. Making the assumption that the thermodynamic 

state does not depend on the relative composition and motion of the two fluids we introduce an error of 

the order of
ρn

ρ
w 2

2
. The advantage however is that standard thermodynamic relations can be used, and 

in particular the following relations hold : 
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dρ =

1+ φ
c2

dp −
φρ
c2

dh  (3.33) 

where φ is the Gruneisen parameter, Cv is the specific heat at constant density, c is the speed of (first) 

sound and h is the specific enthalpy. 

We outline here how the equations are transformed, based on standard algebra and calculus. We 

start by writing the continuity and energy balances in the following form : 
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t
 (3.34) 
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To simplify the notation we group the whole right hand side of Eq. 3.35 into a single quantity Q, i.e. we 

write, 
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where we have defined : 

 

( ) ( ) 







−








⋅∇−⋅∇−⋅∇⋅−⋅+∇⋅∇+=

22
2 m

wsTTkqQ ns
snt wwvwF

ρ
ρρ

ρτ& (3.37) 

We modify the energy equation using the definition of the internal energy differential of Eq. 3.32. 

Substitution into Eq. 3.36 yields the following result, 
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which can also be written in the following alternative form : 
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We recognize readily that the last term on the left hand side is zero by virtue of Eq. 3.34, and 

finally  

obtain an equation for the temperature (one of the desired results) : 

 
( ) QTCTC

t
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To obtain an equation for pressure we substitute the definition of the density differential of Eq. 

3.33 into the continuity equation 3.34, and obtain the following equation that contains pressure and 

enthalpy : 
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To remove the dependence on enthalpy we modify again the energy balance of Eq. 3.36, using 

this time the definition of the enthalpy (see Eq. 3.31), and obtain the following equation for enthalpy and 

pressure : 
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As observed previously, we note that the last term on the left hand side is zero due to Eq. 3.34, 

and hence the relation between enthalpy and pressure is : 
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This can be written in the following alternative form : 
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The result of Eq. 3.44 can be used directly and substituted into Eq. 3.41 to obtain the equation for 

pressure : 
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Equations 3.40 and 3.45 are general results, which are exact for classical hydrodynamics. In our 

case we recall that this result has been necessarily approximated, and is subject to the validity of Eqs. 

3.31, 3.32, and 3.33. 

A complete set of partial differential equations is now obtained for Helium II in the p, vs, vn ,T 

form, consisting of a pressure Eq. 3.45, equations of motion for the superfluid and normal fluid 

components, (Eqs. 15 and 16), a temperature equation (Eq. 3.40), together with the definition of Q of Eq. 

3.37. 
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3.2.1 Model Assumptions Taken During Derivation 

In the course of the derivation, we used the assumption of local thermodynamic equilibrium such 

that the state of Helium II as well as each of its two fluid components were described by independent 

state variables and not dependent on the composition and relative motion of the mixture. We now make 

some additional substitutions and assumptions that further simplify the form obtained; 

1) The friction force, given by the following empirical expression proposed by Gorter and Mellink [15] : 

 
wF 2wA nst ρρ=  (3.46) 

Here A is a function of T and could also depend on w; A=AGM 

2) The divergence of the total velocity is computed using Eqs. 3.1 and 3.2 through the chain relation ; 
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Here the normal and superfluid velocities appear explicitly. We make use in addition of Eq. 3.11 

defining the velocity difference. 

3) The contributions related explicitly to mass exchange m are small in comparison to other terms, and 

we drop these from the balances. 

4) The energy dissipated by viscous dissipation is also small when compared to other sources of heat 

transport (e.g. mutual friction). This term may therefore be treated as a source perturbation. 

5) All terms containing differentials of quantities other than variables p, vn, vs, T are small compared to 

the terms containing the differentials of the variables themselves. In other words we can  regard them 

as perturbations with respect to the leading terms in the equations. 

6) We assume that variations of the Gruneisen parameter are small, such that : 

 φ∇ k∇T( ) ≈ ∇ φk∇T( ) (3.48) 

 

3.2.2 Final Partial Differential Equation System  

We now consider the final PDE system for the thermodynamic state and the 3-D flow simulation 

of the normal and super-fluid components of helium II. With the assumptions of Sections 0 and 0 it is now 
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possible to come to a set of approximate equations that were sought.  These are reported in Table 3.I and 

we observe a time derivative term, the convective flux terms (gradient of the system variables), the 

diffusive terms (Laplacian of the system variables), the non-linear source terms (proportional to the 

system variables), the linear source terms and perturbations. Eq. 3.49 governs the evolution of pressure, 

whereas Eqs. 3.50 and 3.51 give the flow field in 3-D, while Eq. 3.52 governs the evolution of 

temperature. The notation for the various differential operators, for the case of application to scalars, 

vectors or matrices, is reported in Appendix 8.1 
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Table 3.1: Final system of PDE for the thermodynami c state and the 3-D flow of the normal- and superfl uid components in Helium II 
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4 NUMERICAL  TECHNIQUES 

 

4.1 Existing Numerical Simulations for Helium II 

 To support the development of superconductor and large-scale Helium cooling, a detailed and 

accurate modeling of Helium properties is required. The relevant properties of Helium II (such as 

viscosity, density, enthalpy, entropy, specific heat, Gorter-Mellink mutual friction etc.,) can be expressed 

as polynomial functions of pressure and temperature. Arp and McCarty generated a fundamental 

database, HEPAK, whose numerical output is consistent with observed Helium properties [69]. Numerical 

models frequently refer to this database. 

An instructive example is a one-dimensional numerical model presented by Rao et al. to simulate 

a vertical, micron-wide, 15 cm long duct, referred to as the Gorter-Mellink duct [50]. The duct was heated 

at its bottom surface in order to simulate various transient internal-convection heat transfers, including 

forced convection [53]. The numerical approach relied on the finite element method, with the governing 

equations derived from the two-fluid model including the mutual-friction dissipation term in the energy 

equation. This approach differs from the simplified model in which the energy equation is based on the 

1/3 power law dependence of the heat flux on temperature balance as introduced above and used by 

Dresner et al. [51]. Rao et al. used an explicit Adams-Bashforth scheme for the time integration of the 

convective term, while the Euler scheme was used for the other terms [52]. 

 

The relevant variables of the model are the normal and superfluid velocities and temperatures; 

pressure is assumed to be constant over the short vertical height. The interesting results obtained in this 

model included the illustration that Helium II velocities depend on second sound propagation and on 

thermal diffusion when the heat flux is lower or greater than 6 W/cm2, respectively. Another study by Rao 

et al. compares numerical results obtained with the simplified model to the two-fluid model for both 

steady-state and forced convection heat transfer in Helium II [53]. In this second study, Rao et al. solved 

the governing equations with a fourth-order Runge-Kutta method and a control-volume-based finite 

difference method. The variables used were pressure, temperature and normal velocity. Here the 
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convection term is utilized with the upwind scheme. The numerical results are in very good agreement 

with experimental results of Srinivasan and Hofmann [54]. 

 

Bottura et al. generated a one-dimensional package capable of simulating quench propagation in 

superconducting cables cooled by Helium II or normal Helium, using a single-fluid approximation [55][56]. 

Although the primary goal of this code was not to precisely apply the two-fluid model, it tested 

successfully against the experimental results of Srinivasan et al., for steady-state and for transient 

conditions in Helium II [52]. The variables chosen for this simulation were pressure, temperature and 

velocity. In this single-fluid approach, the counterflow heat transport term was added into the energy 

conservation balance. The governing equations were made discrete using a Taylor-Galerkin finite 

element algorithm and solved explicitly in time. The convenient formulation of this model has provided a 

base to our numerical formulation. 

Xiang et al. presented a one-dimensional numerical model, developed as part of the design of the 

proposed TESLA accelerator, which is in support of simulating RF cavities cooled by the 2-phase flow of 

Helium II at 2K [57][58][59][60]. Although a rigorous geometrically correct model was developed and 

presented, taking into account the unique character of Helium II, the friction between the liquid and vapor 

phases was neglected. Pressure, temperature, and mass flow rates were obtained from the differential 

form for the one-dimensional energy and the conservation equations. Numerical results were validated 

against experimental results [61]. 

Ramadan et al. compared two-dimensional results obtained by simulation using a single-fluid 

model to a simulation using a two-fluid model, illustrating the effects of the counterflow between the two 

fluids [62][63]. In this earlier work, the momentum equations for the superfluid and the normal-fluid 

components were simplified by dropping the two largest terms, i.e. the thermo-mechanical effect and the 

Gorter-Mellink mutual friction term. Despite this seemingly drastic simplification, these results have shown 

the advantage of using a two-fluid model to treat the anomalous transport properties of Helium II. Using a 
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similar approach Kitamura et al. addressed the two-dimensional problem by making the assumption that 

the thermo-mechanical effect was approximately equal to the Gorter-Mellink mutual friction term [64][65]. 

Finally, Tatsumoto et al., evaluated the heat transport phenomena for Helium II in a two-

dimensional model by using the two-fluid model and energy dissipation based on the mutual friction 

between the superfluid and normal-fluid components [66][67]. A three-dimensional version was developed 

on the same principle [68]. The resulting computer code, SUPER-3D, uses the finite difference method 

with a staged grid system and the explicit integration of time. The pressure distribution is given by 

derivation of the continuity and the momentum equations using the first order upwind scheme. 

Afterwards, the temperature profile is obtained by solving the entropy equation using a modified Lax 

method. The code was tested against experimental data and also predicted the steady-state critical heat 

flux to a precision of about 9 % [66]. Although SUPER-3D is a very promising tool, the use of its algorithm 

is extremely demanding in terms of computing capacity. In contrast, 3DHeliumSolver, developed in this 

dissertation project, uses a more simplified approach and several carefully chosen approximations which 

allow much faster integrations and simulation.  

 

4.2 The Finite Element (FE) Method 

The numerical treatment of partial differential equation is, by itself, a vast subject. PDEs are the 

engine of computer analyses or simulations of continuous physical systems, and many different 

integration methods exist. In our research we have identified the finite element (FE) method, augmented 

with finite difference (FD) and upwinding, to improve the stability of the solution, and as a preferred 

approach to solving our two-fluid flow approximation.  

1. Discrete domain Ω with simple preselected finite element-grid generations, 

2. Derive the element equation from the governing equation using the variation formulation  

              and the element interpolation function, 

3. Obtain the matrix using numerical integration, 
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4. Assemble element equations to obtain an algebraic system, 

5. Impose boundary conditions, 

6. Solve the resulting system of equations.  

More specifically, we also describe three-dimensional Helium II flow by implementing the 

numerical scheme outlined above.  

The implementation as a software program which we call 3DHeliumSolver, consists of several 

Fortran procedures structured for solving a three-dimensional fluid flow problem, and is capable of 

integrating a set of partial differential equations applied to a sample geometry. The time integration 

implemented is based on the Beam-Warming finite difference algorithm [18]. For a given physical 

problem, space discretization and time integration necessarily lead to a non-linear algebraic system, 

which is then linearized. This permits us to trace the time evolution of each variable, corresponding to 

relevant degrees of freedom. 

3DHeliumSolver makes use of parts of an existing one-dimensional code, THEA, whose PDE 

solver has been transformed to solve three-dimensional hydro- and thermo-dynamics problems. THEA is 

a commercial code, which provides one-dimensional Thermal, Hydraulic and Electric Analysis of 

superconducting cables [17]. For instance, THEA allows the calculation of the propagation of a quench on 

superconductor cables immersed in a Helium bath. The reason for choosing this existing 1-D solver was 

driven by the general form of the PDE considered.  The architecture of THEA subroutines support the 

form of the general PDE that we aim to integrate.  We only used the parts of the routines which solve 

partial differential equations in a one-dimensional system, rewriting them to handle three-dimensional 

finite elements. Then, we implemented partial differential equations for Helium II as derived in Chapter 3. 

The resulting 3DHeliumSolver is based on a three-dimensional Lagrangian finite element in space 

supplemented by Beam-Warming algorithm types in time. 

Within this software framework, the PDE vector of unknowns (u) depends on the phenomena to 

be simulated. The PDEs are defined for the variable U, which contains parameters of the vector of 

unknowns. The PDEs are described by the element mesh, nodes, order of the elements and the nodes, 
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initial and boundary conditions, time step and computing capacity. The number of unknowns in the 

system of equations defines the number of degrees of freedom in the problem. 

4.3 Space Discretization in ξ
ρ

-space and x
ρ

-space 

A modification of the space discretization was necessary to transform the one-dimensional solver 

into a 2-D, and then a 3-D, solver complying with our requirements. Interpolation functions and their 

derivatives are used to discretize the nodal variables and allow a conversion from parent (local) ξ
ρ

-space 

(ξ, η, ζ ) to the physical space x
ρ

-space (x,y,z), with ∑=
I

II Nxx )(ξ
ρρρ

 

Let us first consider a structure divided into finite elements. Let Iu designate a generic degree of 

freedom at the point I, and let ),(~ txu
ρ

be an approximate solution of ),( txu
ρ

. The expansion series can 

then be written :       ∑=
I

II txNutxu ),(),(~ ρρ
     (4.1)  

 II utxu =),(~ ρ
 .  (4.2) 

The functions ),( txN I

ρ
are chosen as locally defined polynomials within each element and are 

equal to zero outside the element. Therefore, a shape function and its derivatives can be defined in both 

spaces using the associated Jacobian, J defined by : 
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  and  ,     

where ;   
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As in standard iso-parametric element theory, the gradient of the interpolation functions in the 

physical x
ρ

-space is derived from the gradient in the parent ξ
ρ

-space as follows : 

 
)()( ξξ

ρρ
IIx NJxN ∇=∇   (4.3) 

An frequently-used method to solve PDE systems based on the weak formulation (or method of 

weighted residual, W) is Green’s theorem : 
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Using Gaussian quadrature for a three-dimensional space with cubic volumes or rectangular 

shapes, numerical integration yields : 
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In practice, we implemented “hard-coded” Gauss and Keast points for the quadrilateral and 

tetrahedral finite element definitions, respectively.  

 

4.4 Space Discretization Method for 3DHeliumSolver 

For discretization in space we subdivide the domain into an arbitrary number of finite elements. Each 

node of the mesh has a number of degrees of freedom (DOF’s) equal to the total number of variables in 

the system. 

We approximate the system variables using shape functions N : 

 NUu ≈  (4.6) 
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where U is the vector formed by the values of the variables at the nodes of the finite element mesh. The 

space discretization is obtained by weighted integration, using weight functions equal to the shape 

functions. As a result the system of PDE’s gives origin to the following system of ODE’s : 

 

[ ] QUSGA
U

M =+++
t∂

∂
 (4.7) 

where the matrices appearing above are obtained by assembling the element contributions of the 

following integrals : 

 ∫= dxTmNNM  (4.8) 

 
∫= dx

x
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aNA  (4.9) 

 
G =

∂N T

∂x
g

∂N
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dx∫  (4.10) 

 
S = NT sN dx∫  (4.11) 

 
Q = NT q dx∫  (4.12) 

The integrals are performed using Gaussian integration, which is necessary to deal with the non-

linearities in the matrices of coefficients, as well as variable order interpolation in the mesh. 

 

4.5 Time Integration Method for 3DHeliumSolver 

The system of ODE’s listed in Chapter 3, Table 3.1 is solved with a modified multi-step algorithm of 

the Beam and Warming (BW) family [18].  We wrote the system in the following simpler form : 

 

QHU
U
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t∂

∂
 (4.13) 

Here we have introduced the matrix H, equal to the sum of the matrices A, G and S. The time 

discretization is performed as follows ; 
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where the superscripts n-1, n and n+1 indicate variables at corresponding time stations during integration, 

and  ∆tn-1 and ∆tn are the time steps from time stations n-1 to n and n to n+1, respectively. To linearize the 

solution of Eq. 4.14 all matrices and loads are evaluated from the known value of Un  at time t*: 

 
1* −∆−∆+= nnn tttt φθ
 

(4.15)  

The increments of the variable U between the time stations are : 
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and we rewrite the system of algebraic equations of Eq. 4.14 as follows : 
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Alternatively, we can write: 

))1(()21()1( 1212 nnnnnn HHHtUUU φφθθξξξ −−−+∆=++−+ ++++
 (4.19)  

where Hn is the weight coefficient at time n [18]. 

The given algorithm is modified from the typical BW one, because we consider an approximate 

matrix as being equivalent to the matrix at the previous time, whereas the time step is progressing in 

space. This technique can be referred to as a “pseudo-implicit” method, which has the advantage that the 

solutions are unconditionally stable. Every degree of freedom is listed at any time t and the matrices are 

full. Implicit methods  

The parameters θ, ξ and φ, must be chosen so that the method referring to the modified two-step 

BW-type algorithms is consistent and achieves the desired accuracy [18]. Depending on the choice of the 

set of parameters, several known numerical schemes can be obtained. A list of possible choices is given 

in Table 4.1, together with the order of numerical accuracy achieved. 
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Table 4.1: Choice of numerical parameters for the t ime integration scheme and corresponding time 
accuracy 

Method #  Algorithm   Order  θθθθ    ξξξξ    φφφφ    
1 

 

Euler Backward 
 

Implicit 1 1 0 0 

2 
 

Backward Euler (Galerkin) 
 

Implicit 2    

3 
 

Crank-Nicholson (one-step 
trapezoidal) 

 

Implicit 2 1/2 0 0 

4 
 

Backward differencing 
 

Implicit 2 1 1/2  

5 
 

3rd order 
 

Implicit 3 1/3 -1/6  

6 
 

Adams-Moulton 
 

Implicit 3 5/12 0 1/12 

7 
 

Milne 
 

Implicit 4 1/6 -1/2 -1/6 

  
 

All matrix and vector operations called by the time integration routine reside in a set of 

mathematical libraries available in the one-dimensional THEA code. We defined a relative error by 

computing the difference between the solution for the time integration over the step t � t + ∆t  to the step 

t� t+∆t/2 � t + ∆t.  

The main task was to modify the given THEA routines, according to the methods described 

above, to implement shape functions for three-dimensional finite elements, their local and global 

derivatives, the associated Jacobian and its determinant. 

 

4.6 Vector Form for the PDE System  

At this stage of the development of 3DHeliumSolver, we have defined our problem in general 

terms using a matrix and operator formulation. This allowed us to simplify the formalism at the level of the 
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implementation of the code. The conservation laws that have been chosen to model the two-fluid flow 

were put in the general matrix representation for the partial differential equation system.  

The first three-dimensional mesh generated considered tetrahedral finite elements. The Jacobian 

of the associated interpolation functions was calculated using Eq. 4.3. Its determinant and matrix 

operations were then implemented in the three-dimensional code. Gaussian points for tetrahedral finite 

elements were “hard-coded” and used in order to obtain integrations and expansion series as listed in Eq. 

4.5. 

With all equations now in an appropriate form for numerical treatment, we proceed to express 

these equations in a compact vector form, which is symmetric and convenient for simplifying computer 

code.  

The problem is to solve the two-fluid approximation equations of Table 3.1 for which the PDE 

form is : m 
∂u
∂t

+ a ∇ ⋅ u + ∇ ⋅ g ∇ ⋅ u( )+ s u = q  (4.20) 

where m is a mass matrix, a  is the advection matrix (with components xa , ya , and za ), g  is the 

diffusion matrix, s  the source matrix and q the forcing vector. The source term associated with the matrix 

s  introduces non-linearity into the problem that usually requires implicit treatment to achieve numerical 

stability. The vector of unknowns (u) is defined here in general term and can be specifically written to 

contain terms describing the motion and the state of the superfluid flow, as described below. 

Eq. 4.20 is a generic, parabolic-hyperbolic system of partial differential equations for the vector-of 

-unknown’s u. In the specific case of Eqs. 3.49 through 3.52, the vector u is given by : 
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Matrices and vectors are found by identifying terms with the final PDE system in Table 3.1. 

Specifically: 
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The system of Eq. 4.20 is written using a weighted residual at the nodes. If the weight functions 

are equivalent to the shape functions, then we obtain the following set of ordinary differential equations in 

time ; 

 QUSGA
t

U
M =−++ )(

∂
∂

 (4.27) 
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Here the matrices are the discrete versions of the PDE system matrices, obtained by integration 

over the finite elements (weak formulation of the problem). The vector of unknowns U contains values of 

pressure, normal velocities, superfluid velocities and temperature at each node of the finite element 

mesh. These matrices are obtained by integration over each finite element and assembly over the mesh. 

The matrices are defined by 

 

Ω= ∫
Ω

dNmNM JIJ

J

IIJ   (4.28) 

 

Ω∇= ∫
Ω

dNaNA JIJ

J

IIJ   (4.29) 

 

Ω∇∇= ∫
Ω

dNgNG JIJ

J

IIJ   (4.30) 

 

Ω= ∫
Ω

dNsNS JIJ

J

IIJ  (4.31) 

 

Ω
Ω

dqNQ J

J

JJ ∫∫∫∫ ∇∇∇∇====  (4.32) 

 

4.7 Expression of Thermo-Physical Properties 

The thermo-physical properties of He II, have a strong non-linear dependence on temperature. 

The handling of these quantities is primordial to controlling numerical instabilities. Every property value is 

called by 3DHeliumSolver from an existing library [69].  

Due to the importance of the Gorter-Mellink coefficient (AGM), we use discrete values extracted 

from Hepak to build a specific expression as a 12th order polynomial for AGM(T)=∑ ������� ,  where the 

coefficients are defined as per Table 4.2: 
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Table 4.2: Coefficient for the polynomial fit of th e Gorter-Mellink coefficient 
 

a0 
-
2.15579E+11 

a1 1.2738E+12 

a2 
-
3.32561E+12 

a3 4.98305E+12 

a4 
-
4.60071E+12 

a5 2.50166E+12 

a6 
-
5.02179E+11 

a7 -3.3587E+11 

a8 3.30421E+11 

a9 
-
1.37726E+11 

a10 32840174914 

a11 -4365737229 

a12 252790501.1 

 

A similar expression has been used elsewhere [70]. Fig. 4.1 shows the fit of the Gorter-

Mellink coefficient used in the numerical calculations. 

 

 

Figure 4.1: Fit of the 12 th order for the Gorter-Mellink coefficient, A GM 
 

 

5 RESULTS USING 3DHELIUMSOLVER 
 

We present here the results from a performing code, based on the algorithms developed in 

Chapter 3. This new tool, called 3DHeliumSolver, is based on the modification of an existing one-

dimensional PDE solver. The current code modifications provide the possibility to look up fluid or 

material properties from an existing database. 
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In Section 5.1, we emphasize the scaling analysis w.r.t. the PDE system summarized in 

Table 3.1. This analysis provides us with a friendlier PDE, whose coefficient can be directly 

implemented in the new 3DHeliumSolver. 

The following chapters show the results obtained using the friendly PDE system to simulate 

the Helium II in the two-fluid flow problem. It is worth noticing that a staged approach has been 

used to develop 3DHeliumSolver. First we evaluate the performance of the code for simple time 

dependent heat conduction in order to validate the new 3-D space integration algorithms and 

review the numerical stability of our tool. This well-behaved solution permits us to examine the 

convergence of the code with respect to seven different time discretization technique based on the 

Beam-Warming finite difference algorithm family i s. Then we studied the interesting and 

numerically challenging phenomena of transient convection-diffusion. The main difficulty in the 

integration comes from the first order terms inside the hyperbolic equations, corresponding 

physically to the vanishing viscosity of the super-fluid component of Helium II. These terms 

generate important instabilities. Following the common approach, we utilize an artificial diffusion 

and examine code behavior through the whole spectrum of the Peclet number Pe (inversely 

proportional to the coefficient of artificial diffusion), where 0 and infinity represent pure diffusion and 

pure convection respectively.  We show that the integration outcomes and stability are improved by 

this technique. We studied Euler flow conditions and the influence of the viscosity, respectively. 

This last section directly leads to the simulation of Helium II behavior.  

In the light of the scaling analysis, we can implement the simplified PDE in the 

3DHeliumSolver, in order to model as accurately as possible the two-fluid model approximation. 

Several test cases are considered to validate the 3Dsolver and the choice of the PDE. We have 

benchmarked the new PDEsolver using problem, which can be directly verified by the theory. For 

this purpose, we have reproduced the unique property exhibited by the Helium II properties, i.e. the 

propagation of the second sound. The influence of the fluctuation of the entropy is imbedded in the 

new PDE system. 1-D and 2-D analyses were conducted and results are illustrated in chapter 5.4. 
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A second fundamental characteristic of Helium II behavior lays in the existence of the thermal 

counterflow, i.e. heat transfer with no fluid bulk velocity.  2-D and 3-D analyses are studied for a 

closed channel and results are illustrated in chapters 5.5 to 5.7. 

 

5.1 Scaling Analysis 

The phenomenological description of the Helium II dynamics in the two-fluid model is 

modeled after the set of Eqs. 3.49 to 3.52, Table 3.1. Each term has been qualified in the previous 

chapters. We need now to quantify each of them in order to understand which terms are 

predominant in this dynamics model. For this matter we have completed a scaling analysis, using 

the following dimensionless variable listed in Table 5.1: 

 

Table 5.1: List of the dimensionless variables – Ex pressions 
 

� � ����  �  � � ! � !�!� " � "�"� � !�
#�

"� 

# � #�#� #$ � #$�#$� #� � #��#�� % � �#$&#�� � %�%� 

' � '�'� '$ � '$�'$� '� � '��'�� ( � (�(� 

) � )�)�    

 

where the index -0 indicates the fluid quantities at a temperature and pressure of 1.9 K and 0.1 

MPa, respectively. The index * indicates the unit of the given quantity. After a preliminary scaling 

analysis, it has been shown that the orders of magnitude of the different densities ('no, 'so , 'o) are 

equivalent to '�. Similarly, the orders of magnitude of the fluid velocities (vso, vno, wo, vo) are 

equivalent to vo. 

Temperature, pressure, distance, time, densities, entropy, viscous effect, velocities are listed in 
Table 5.2. 
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Table 5.2: Helium II properties at 1.9 K, 0.1 MPa ( used in scaling analysis) 
 

Quantity To po ro to vo o So o 

Value 1.9 0.1 0.01 0.1 0.1 100 733 10-6 

Unit K MPa m sec m/s kg/m3 Joule/m.K P.sec 

 
 

5.1.1 Equation of Mass Conservation: p 

The scaling analysis for the pressure equation uses Eq. 3.49 and the description of the 

different variables above in order to identify dimensionless numbers and seize their importance in 

the flow mechanism. The dimensionless pressure equation can be written as follows: 
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The Eq. 5.1 obtained after variables substitution has a dimension zero, supporting the initial 

formulation of the problem. After quantification, each dimensionless quantity is listed in Table 5.3 

and the influence of each term can then be compared to the original pressure.   

 
Table 5.3: Dimensionless quantities for the mass co nservation 
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As expected, the main driver of the pressure wave propagation is the velocity field. The 

convection of the mass and the first sound decompression of the density dominate the mechanism 

of the Helium II flow. The pressure wave will propagate at the speed of the first sound in a Helium II 

channel. The fluid density can be assumed constant. Hence, we can consider that the fluid is 

incompressible.  

For the sake of describing transient behavior, and to maintain the stability and nature of the 

PDE solver, we keep the derivative in time and the conduction term (which is only different from 

zero above Tλ).  The term associated to the exchange of entropy is also kept.  

The inertia term, CPr1, describing the influence of the viscous effect is neglected. 

Surprisingly the mutual friction term can also be dropped from the equations.  

According to the scaling analysis, we simplify the governing equation Eq. 3.49, as follows : 
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(5.2) 

 

5.1.2 Equation of Momentum Conservation for the Nor mal Velocity: v n 

We now consider the momentum conservation for the normal velocity, vn as shown in Eq. 

3.50. As for the mass conservation, we can identify dimensionless numbers and estimate their 

weight in the final equation. The dimensionless equation can be written as follows : 
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where the dimensionless quantities are identified and listed in Table 5.4.  
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Table 5.4: Dimensionless quantities for the normal velocity equation 
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As expected, the main contributors to the velocity field are the pressure and the 

temperature gradients. The importance of the temperature gradient is symbolized by the thermo-

mechanical effect or fountain effect observed in He II. In a traditional fluid, pressure would be the 

only driver. The inertia term, CVnR1, showing the influence of the viscous effect, is neglected. 

Similarly, the gravity term is not considered in the result of the following chapter. 

For the sake of algorithm stability, we keep the transient terms. Terms expressing the 

mutual friction are also implemented in the final PDE. Hence, after scaling analysis the governing 

Eq. 3.50  can be simplified as follows : 
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 (5.4) 

5.1.3 Equation of Momentum Conservation for the Sup erfluid Component: v s  

The identical approach is taken when we consider the momentum conservation for the 

superfluid velocity component, and the observations are similar. Using Eq. 3.51 and the description 

of the different variables above, we identify dimensionless numbers by writing the following Eq. 5.5 

and Table 5.5 : 
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Table 5.5: Dimensionless quantities for the momentu m conservation for the superfluid velocity 
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Here too, we observe that the contributors to the superfluid velocity field are the pressure 

and the temperature gradients. As for the total velocity behavior, the superfluid velocity is mainly 

influenced by the thermo-mechanical effect and by the pressure gradient. It is therefore acceptable 

to simplify Eq. 3.51 to :  

 
gvv

v
ssnsnns

s
ss

s wAwA
t

Tsp ρρρρρ
∂

∂
ρρ

ρ
ρ

=+−+∇−∇ 22

  (5.6) 

 

5.1.4 Equation of Energy Conservation: T 

Finally, we consider the energy conservation of the Helium II, Eq. 3.52. If we substitute the 

different terms of the equation with the dimensionless variables introduced earlier, we obtain the 

following dimensionless equation : 
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This dimensionless equation includes numerous quantities. The temperature transient 

represents an important impact to the dynamism of the flow. As for the pressure equation, the term 
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associated with the exchange of entropy between the normal and the superfluid components is 

important.  The dimensionless quantities are compared in Table 5.6.  

 
Table 5.6: Dimensionless quantities for the energy balance 
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We see that the temperature variation is weakly related to energy dissipation due to the 

Gorter-Mellink effect and is independent of the pressure gradient. The transient phenomena 

influence the mechanism of the Helium II mass and heat transfer. As for the pressure equation, we 

note that the entropy exchange, the convection term and the effect of expansion/compression are 

not negligible. Surprisingly, the effect of the energy exchange between the two components, CTv1, 

can be neglected. 

Following the same guiding principle as for the pressure equation, we obtain the following 

simplification :  
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5.2 General PDE Used to Model Helium II Flow 

For the sake of interpretation, we have substituted the variable vn  (vnx, vny, vnz)by the total 

(bulk) velocity v(vx, vy, vz) as follows : 
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�+ vvvvssss 

(5.9) 

 
In practice, the choice of the total (bulk) velocity, v, rather than the normal velocity, vn, 

permits to impose boundary conditions, which can be determined based on experimental input, e.g. 

simulation of forced flow conditions. Indeed, the choice of the normal and/or superfluid components 

of the velocity is subject to interpretation. Instead, the bulk velocity can be measured; hence its 

choice represents a more reliable variable to track. 

Finally, according to the scaling analysis, we model the Helium II flow by the following PDE 

system : 
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Eight degrees of freedom (DOF) in a three-dimensional space are considered, namely the 

pressure, p, the velocity v(vx,vy,vz), vs(vsx,vsy,vsz) and the temperature, T. The vector of unknowns 

is expressed by u(p,v, vs, T).  

The substitution of this PDE into the general form of the PDE in time (discussed in Section 

4.6), leads to the matrices : 
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5.3 Numerical Analysis 

5.3.1 Algorithm Stability 

The numerical treatment of the partial differential equation is, by itself, a vast subject. PDEs 

are the engines of computer analysis or simulations of continuous physical systems and many 

different integration methods exist. A main advantage is that the (p, v, vs, T) variables are the 

drivers of conservation balances, and treating them implicitly in the solution algorithm largely 

improves the stability of the numerical integration.  

We have identified the finite element (FE) method augmented with finite difference (FD) 

method with upwinding, to improve the stability of the solution, as a preferred approach for solving 

our two-fluid flow approximation. 

Numerical analyses were performed using simple one-, two-, and three- dimensional 

models. The adaptability of the new code allows us to activate different numerical schemes of the 

Beam-Warming family. The time integration methods are implemented to take into account the 
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variation of the helium properties with temperature and pressure. In particular, the Gorter-Mellink 

coefficient depends strongly on temperature, and tests were performed using it as a constant, linear 

or 12th order polynomial with temperature as a unique variable.  

Artificial diffusion has been used to enhance the numerical stability. Upwind artificial 

diffusion was added to the pressure and temperature equations to balance the negative diffusion 

associated with the finite element discretization of the convection terms in these equations. Artificial 

viscosity is used for the momentum equations based on the Lapidus scheme, to balance the 

dispersion and improve the response to waves and discontinuities in the velocities. 

 

5.3.2 Stabilizing the PDE System Using Artificial D iffusion 

By comparison to the classical Navier-Stokes equations, the considered PDE system 

doesn’t use the viscous term. Indeed, according to the scaling analysis, this term is neglected since 

it is 3 order of magnitude smaller than the other terms of the governing equations. Hence the 

behavior of the PDE solutions is similar to solutions obtained from the Euler equation, which is well-

known by numericists to be difficult to stabilize. With this in mind, we introduce different schemes of 

artificial diffusion techniques (overdamping). The use of predefined schemes is helpful to stabilize 

the solution without changing the solution too much.  

The distinction between hyperbolic, elliptic and parabolic partial differential equations can 

be qualitatively described by the way the disturbances are propagating. A perturbation of the initial 

data of an elliptic or parabolic equation is felt simultaneously by every node in the domain. The 

PDE system developed in Chapter 3 contains several nonlinear terms and is highly hyperbolic. The 

use of hyperbolic partial differential equations typically generates numerical instabilities, due to the 

fact that a local disturbance is not felt by every node at once and an oscillation can propagate 

through the mesh. Large oscillations due to the local numerical instabilities can be handled by 

refining mesh size, tuning the time step or by adding artificial diffusion (artificial viscosity or 

numerical diffusion are also commonly used terms). Artificial diffusion is added to a scheme to 
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stabilize it for dominating convection conditions, i.e. by adding a diffusive term proportional to the 

second space derivative of the solution to the transport equations :   

  −α artificial

∂ 2u

∂x 2  (5.9) 

where the different methods utilize different values of artificial diffusion coefficient as illustrated in 

Table 5.7. A detailed study of the artificial diffusion is shown in Appendix 8.4. 

 

Table 5.7: Artificial Diffusion for different numer ical schemes 
 

Numerical scheme Mass matrix Artificial Diffusion 
Finite Difference lumped 0 

Upwind Finite Difference lumped 
2

v x∆
 

Finite Elements consistent 0 

Lax-Friedrichs lumped 
∆x 2

2∆t
 

Lax-Wendroff lumped 
2

v2 t∆
 

Taylor-Galerkin consistent 
2

v2 t∆
 

 

Hence, the pressure and the energy equations make use of the first-order upwind upwind scheme, 

as defined above. The artificial viscosity is proportional to the fluid speed and the element size, resulting in 

optimal balancing of the hyperbolic transport term at high Peclet number. This choice is effective for 

velocity at fronts and large temperature gradients, but can lead to pressure oscillations during transients. 

For the momentum equations, we prefer to use the second-order artificial viscosity as defined by 

Lapidus. The artificial viscosity is proportional to the velocity gradient and to the square of the element size 

through an empirical coefficient. This choice provides good smoothing for velocity and pressure at fronts, 

but is not effective for temperature fronts. 
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Table 5.8 lists the different schemes used and the characteristic parameters implemented 

in the matrix G (see Eq. 4.40). 

 

Table 5.8: Summary of the different Artificial Diff usion schemes used 
 

Pressure equation Velocity equations (v and vs) Energy equation 

(upwind) (Lapidus) (upwind) 

p: 
�.
� |# 0 1| 

 

23 · 5� · 6dv
dx6 

 

p: φ'29 �.
� |v| 

T: '29 �.
� |v| 

 

5.3.3 Convergence Error 

We have performed a convergence analysis in time and in space to verify the validity and 

the capability of the code. Simple linear geometries with different mesh sizes and different time 

steps were used to assess the errors.  

Fig. 5.1 shows the error of convergence in time obtained using the Euler-Backward scheme 

as defined by the L2 and the L∞ norms (the two norms are described in the following chapter 

5.3.4), e.g. to estimate the error of convergence in time, we use the maximum deviation: 

L∞: :v;< & v;<� := � >v;< & v;<� ?>?
@AB

,  

and the standard deviation : 

L2: :v;< & v;<� :� � C∑ >v;< & v;<� ?>�
? D

E
� 

where dt is the time step; vnz_Linf and vnz_L2, are the differences between the normal component 

velocity, vnz, and the reference velocity, v$F� , obtained using the smallest time step. Results are 

comparable for both averaging techniques. As expected, the convergence rate is close to 1.  
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Figure 5.1: Error of convergence in time 
 

We expect that a 1st order time integration method, such as the Euler-Backward Implicit 

scheme, converges monotonously toward the solution with a modest rate. On the other hand, the 

use of the 2nd order accurate Crank-Nicholson algorithm has a higher rate of convergence, hence 

reaching a desired error faster, but solutions can exhibit instabilities.  

In a similar approach, we test the convergence using 1-D models composed of different 

node numbers for a given channel length.  Fig. 5.2 shows the error of convergence in space 

obtained using the Euler-Backward scheme is close to 1. 

 

Figure 5.2: Error of convergence in space 
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5.3.4 Data Post-Processing and Data Dispersion 

The results of the 3DHeliumSolver are stored in a text file, available for post-processing. 

This output file contains the coordinate of the node, the pressure, the temperature and velocities 

listed at every time step. The total, the normal and the superfluid velocities are available for each 

time step, providing the evolution of the resulting velocities fields. The data are processed by 

visualization of the resulting fields, using Excel® and Tecplot ®.  For the objective of the numerical 

analysis, the dispersion on the results is defined in term of Lp metrics. We use the maximum 

deviation (L∞), Eq. 5.14, and the standard deviation (L2) Eq. 5.14 (with p=2), to estimate the normal 

component velocities. A similar functional analysis is applied to the different test cases considered 

below. The norms are defined as follows : 

 :G:= � |G$|$�H�  (5.14) 

:G:� � �∑ |G$|�$ �E
I (5.15) 

 
 

5.4 Second Sound Propagation  

Helium II exhibits particular properties like the fluctuation of entropy, which in turn results in 

the observation of a second sound. The use of second sound in a bath of Helium II is very 

important. For example, it provides an experimental way to detect the origin of a quench in 

superconducting RF cavities or magnets [71]. Whereas temperatures can easily be experimentally 

measured, the velocities can hardly be measured to any accuracy. Hence modeling second sound 

using pressure, temperature and heat flux as boundary conditions has useful applications. 

The speed of the second sound (c2) is determined by observing the temperature rises at 

given locations within the 1-D model. Fig. 5.3 shows a schematic view of one method of measuring 

this experimentally. A heat source is applied at one extremity to a channel filled with a bath of 

Helium II. A temperature sensor installed along the channel will measure the rise in temperature 
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caused by the heater. Typical experimental set-ups make use of a square-shape pulse of heat flux 

in order to better monitor this phenomenon using thermometry techniques.  

In a numerical approach, instead of using temperature sensors, we trace the evolution of 

the temperature and the velocities at any node of interest along the Finite-Element mesh. To 

illustrate this, we consider a bath of helium at 1.9 K, which can be modeled by a 1-D linear mesh 

and simulate applying a heat flux of 15 kW/m2 to one extremity, while maintaining the other 

extremity at 1.9 K and 105 Pa. The channel is composed of 100 linear FEs for a total length of 1 m. 

Figures 5.2 and 3 illustrate the temperature and velocity profiles for example bath temperatures of 

1.6 K, and 1.9 K, respectively. The amplitude of the temperature step decreases when moving 

away from the heated boundary, which corresponds to attenuation of the second sound wave, and 

is reflected in a decreasing amplitude of the normal and superfluid velocity steps. The normal and 

superfluid component velocities are shown for 4 nodes along the mesh for the first 0.5 sec. The 

selected nodes are located at the inlet, 20, 40 and 80 % of the total channel length. The time step 

used for this simulation is 10-5 sec. The speed of the second sound is estimated by determining the 

time of the variable rises for at least 4 nodes along the mesh. The results are averaged and 

reproduced for different mesh sizes and different time steps.  

 

 

 

 
 

Figure 5.3: heat flux of 15 kW/m2 applied to one ex tremity, while maintaining the other 
extremity at 1.9 K and 105 Pa. 

 

 

Q 
c
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Figure 5.4a: Propagation of the temperature and vel ocities waves, for nodes located at the 
inlet, at 20 %, 40 % and 80 % of the total channel length. Bath temperature is 1.62 K. c2=21.97 m/s  

 

 

  

Figure 5.4b: Propagation of the temperature and vel ocities waves, for nodes located at the 
inlet, at 20 %, 40 % and 80 % of the total channel length. Bath temperature is 1.9 K. c 2=19.96 m/s 

 

Numerical results can be compared to theoretical calculated values. The speed of the 

second sound in Helium II is defined as [2]:     1� � C�,
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Fig. 5.5 shows good correlation between results and expectation for second sound 

velocities. The error is smaller than 10 % for the range of bath temperatures 1.4 K–2.1 K.  

 

Figure 5.5: 2 nd sound: Comparison of numerical and theoretical pre diction for different bath 
temperatures 

 

Fig. 5.6 compares the normal component velocities of the first node for different bath 

temperatures (1.4 K to 2.15 K), while applying a constant heat flux to the inlet. The closer to Tλ the 

bath temperature is, the smaller the normal velocity component is.  

 

 

Figure 5.6:  2 nd sound: Comparison of normal velocities estimated 
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In the same way, we consider now a 2-D mesh, where we apply a heat flux to one face 

(x=0 m), while constant temperature and pressure are maintained on the other side. The mesh is 

defined with 1,728 quadrilateral finite elements (1,813 Nodes), providing the necessary space 

resolution to track the propagation of the wave. The time step used for the simulation is 10-6 sec. 

Results are stored every 10-6 sec.  Fig. 5.7 a) shows the temperature wave propagating at 3 

selected time steps (20 10-6, 80 10-6 and 130 10-6 sec). The last two meshes Fig 5.7 b) show the 

normal and the superfluid component velocities after 0.13 msec. The main gradient is seen along 

the x-axis when a uniform heat flux is applied on the y-axis. The small existing gradient different 

appearing for y=0 m and y=0.05 m, is due to the boundary conditions set so that the bulk velocity 

along the y-axis is zero for both sides. 

 

a) Vnx propagation for time steps (20 10 -6, 80 
10-6 and 130 10 -6 sec).   

b) Resulting normal and superfluid 
component velocities after 0.13 msec.  

 
Figure 5.7: Temperature evolution when the left sid e is heated. The initial bath temperature is 1.8 K 
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5.5 Thermal Counterflow in a 2-D and 3-D Channel 

To illustrate a typical application, we consider thermal counterflow in a channel of Helium II. 

Three test cases are shown below:  

1) 2-D channel modeling of a bath of Helium II.  A temperature difference is applied between 

the inlet and the outlet of the channel. Boundary conditins are shown in table 5.9. 

2) 3-D string of cubic Finite-Elements forms a long bar/channel. A temperature difference is 

applied between the inlet and the outlet of the channel. Such a mesh makes it possible to 

reduce the two dimensional problem to that of a 1-D problem, making possible comparisons to 

analytical solutions.  

3) We reproduce experimental conditions at NHMFL, while using a 0.2 m long 1-D channel 

composed of 201 linear FEs. We compare the influence of the Helium II bath temperature at 

1.62K, 1.68 K, 1.70 K, 1.77 K, 1.80 K, and 1.90 K. 

 

First, a 2-D channel, 0.05 m long and 0.01 m wide, is modeled using 640 and 1,728 

quadrilateral Finite Elements. The initial conditions and helium properties of the channel are set to 

simulate a bath of Helium II at 1.8 K, 0.1 MPa,   We apply a constant temperature difference of 100 

mK between the inlet, S3, and outlet, S4, of the 2-D channel. The largest acceptable time steps 

used to obtain stable numerical solutions at 640 FEs and 1,728 FEs, are 10-4 sec and 10-5 sec, 

respectively. This case is equivalent to imposing a heat flux of 27 kW/m2 on a 1.8 K bath.  

Table 5.9 lists the boundary conditions selected for the first test case.  Fig. 5.8 a) shows 

the definition of the mesh and its sides.  
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Table 5.9: 2-D: thermal counterflow using a rectang ular channel 

 
 S1 S2 S3-inlet S4-outlet 

Initial 
conditions 

p=0.1 MPa  ; vx=vsx=vy=vsy=0 m/s; T=1.8 K 

Boundary 
conditions 

vx=vsx=0 vx=vsx=0 T=1.9 K 
Vy=0 

T=1.8 K 
vy=0; p=0.1 MPa 

 

Fig. 5.8 b) and c) show the resulting temperature gradient, and velocities. Arrows illustrate 

the trajectory of the normal (c) and superfluid velocities (b), endorsing the two-fluid thermal 

counterflow behavior (see Fig. 2.8). We recall that no bulk velocity is imposed. At steady-state, the 

temperature gradient is linear and the pressure is constant throughout the mesh, as expected for a 

1-D symmetrical problem. 

 

a) Geometry and boundary conditions        b) Tempe rature and v sy (arrows)     c) Normal component  
 

Figure 5.8: 2-D simulations of thermal counterflow in a Helium II channel after 1 sec 
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In the second illustration, a 3-D string of 100 cubic Finite-Elements is used to form a 1 

meter long channel with a square cross-section. Each cubic FE has dimensions 0.01 x 0.01 x 0.01 

m3. We apply a temperature difference between the inlet and the outlet surfaces of the channel. 

Since the ratio of the channel length to its width is 100, we make the assumption that the results 

can be compared to analytical 1-D solution. According to chapter 2.2, in steady-state mode, the 

heat transported by Helium II can be approximated by : 

 ∫ 







=

Tin

Tout dx

dT

pTfL
q

3

1

),(
11&  (5.6) 

where Tout is the cold temperature applied to the outlet surface and Tin is the warm temperature 

applied to the inlet surface. The expected normal velocity is given by vn � 
	
�·�·�  and the resulting 

superfluid component velocity vs � M�+·v+
�, . 

 In order to validate our results, we vary the temperature difference across the channel by 

imposing different inlet temperatures Tin, while the outlet temperature and pressure is fixed at Tout = 

1.8 K and 105 Pa. Fig. 5.9 and Fig. 5.10  compare the expected values of  vn and vS to the 

numerical results.  

The error associated with the numerical approximation is less than 4 %. Larger 

discrepancies are observed in regions with strong non-linearity, i.e. close to Tλ where the 

approximation provided by Eq. 5.6 is most likely no longer fully consistent with the approximations 

of the fluid properties (see Fig. 4.1). 
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Figure 5.9: Normal component velocity at steady-sta te on the inlet 

Figure 5.10:  Superfluid component velocity at stea dy-state on the inlet 
 

 

In the last illustration, we study a 1-D long model for which we maintain a constant outlet 

temperature and pressure while applying various different heat fluxes to the inlet. The choice of 

initial and boundary conditions aims to reproduce experimental data obtained using the PIV 

technique [72] [73] [1].  
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As shown on Fig. 5.11, a factor 

theoretical value of vn  was obtained

signature of the normal velocity component (the only one that carries entropy).  Vp,a_1_8K, is the 

velocity measured by PIV techniques in NHMFL [1]. The numerical results show the velocity of the 

normal component of Helium II, obtained for the selected heat 

obtained at steady-state, are added and compared to NHMFL’s published result [

discrepancies observed between the 

measurements were discussed elsewhere [

 

Figure 5.11: Comparison of the velocities resulting from thermal  counterflow in a 
 

 

Finally, all conditions experimentally tested in NHMFL were reproduced and compared to the 

analytical one expectation of vn (Eq. 

 

factor 2 between the measured velocity of the particle and the 

was obtained in average. Hence the PIV technique doesn’t allow a precise 

gnature of the normal velocity component (the only one that carries entropy).  Vp,a_1_8K, is the 

velocity measured by PIV techniques in NHMFL [1]. The numerical results show the velocity of the 

normal component of Helium II, obtained for the selected heat fluxes.  The numerical values of v

, are added and compared to NHMFL’s published result [1

discrepancies observed between the normal component and the particles’ velocity during these PIV 

measurements were discussed elsewhere [76][77]. 

 

Comparison of the velocities resulting from thermal  counterflow in a 

all conditions experimentally tested in NHMFL were reproduced and compared to the 

(Eq. 1.1). Numerical results fit theoretical values within 10 %.

89 

between the measured velocity of the particle and the 

. Hence the PIV technique doesn’t allow a precise 

gnature of the normal velocity component (the only one that carries entropy).  Vp,a_1_8K, is the 

velocity measured by PIV techniques in NHMFL [1]. The numerical results show the velocity of the 

The numerical values of vn 

]. The large 

normal component and the particles’ velocity during these PIV 

Comparison of the velocities resulting from thermal  counterflow in a 3-D channel 

all conditions experimentally tested in NHMFL were reproduced and compared to the 

Numerical results fit theoretical values within 10 %.  
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5.6 2-D Simulation of Large Eddy Structure – Qualitativ e Approach 

In this chapter we aim at demonstrating the existence of large eddy structure in a bath of 

Helium II, on which a localized heat flux is applied. This model represents an experimental setup 

[66][67]. This qualitative approach gives the particular behavior of the Helium II, as modeled 

through the PDE system. To illustrate these phenomena, we consider a 2-D mesh, composed of 

640 quadrilateral FEs. We impose a heat flux on a portion of the inlet surface. Fig. 5.12 the initial 

and test cases studied. The initial and boundary conditions are displayed in Fig. 5.12 and in Table 

5.10. A heat flux is applied to half of the bottom left side, (see Side 5, S5). 

The time step is 10-4 sec leading to a Courant number, 1 · N" NGO , equals to 0.4. The 

distributions of pressure, temperature and velocities can be traced over the time step for every 

node of the mesh.  Similar conditions are applied on a second mesh composed of 1,728 FE. The 

results obtained are comparable. Fig. 5.12 and 5.13 illustrate the results for both meshes at the 

different conditions.  

 

a) Mesh composed          b) Mesh composed               c) Bulk velocities    d) Superfluid velocitie s  
   of 640 quadrilateral FE    of 1,728 quadrilatera l FE           (q=11.2 kW/m 2)          (q=11.2 kW/m 2) 

 
Figure 5.12: Boundary conditions applied on the rec tangular meshes and Kyoto’s result [67] 
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Table 5.10: 2-D thermal counterflow using a heater:  List of the conditions 
 

 S1 S2 
S3 – inlet 

(right) S4 - outlet 
S5 – 

heater(left) 

Initial 
conditions 

p =1e5 Pa ; v=0; vs=0; T=1.8 K 

Boundary 
conditions 

vx=0; 

vsx=0 

vx = vy =0; 

vsx=0 

vy=0 

vsy=0 

vy=0 

T=1.8 K 

p=1e5 

T=1.9 K 

 

                                               
a) Superfluid component  

Velocity, v s (640 FE) 
b) Streamline for v n and temperature (1,728 FE) 

(after 1.5, 3 and 60 msec, respectively) 
 

Figure 5.13: Superfluid component velocity field an d temperature gradient - heat applied to the bottom  left 
side 

 

In the transient mode, we observe the propagation of the temperature front along the vertical axis, 

y-axis. For a selected time step of 10-4 sec, the temperature distribution becomes stable after 100 msec 

and permanent eddy structures are observed. This is a signature pattern of the peculiar properties of 

Helium II. The rising normal component of fluid typically loses heat because it encounters a colder space; 

it also exchanges entropy and energy with the superfluid component traveling in the opposite direction, 

i.e. toward the warm source. The large structure moves.  It was also observed elsewhere that the bulk 

velocity resulting from this type of condition The heat is only applied to half of the inlet section, provoking 
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an asymmetrical condition on inlet side of the model. The mechanism can be interpreted using the 

significance of the terms in the governing equation. Indeed, although the convective term and the inertia 

term are neglected in the balance (i.e. the viscosity has been dropped from the governing equations), we 

observe the existence of “convective cells”. Hence, at steady-state only the mutual friction, coupled with 

the non-linear Helium II properties can cause entropy exchanges and the flow pattern. Energy dissipation 

based on the mutual friction between the two components generates variation in Helium II properties. 

Similar numerical convection-like observations were obtained by the Kyoto team using an explicit 

finite difference method [67]. It is worth noting that they do not neglect viscosity or the convective term in 

the governing equations.   

 

5.7 Qualitative Comparisons to NHMFL Experimental Resul ts 

5.7.1 Thermal Counterflow around a cylinder 

Another exciting test case relates to the distinctive experimental work developed at NHMFL 

[5][74]. They show the thermal counterflow effect resulting from the implementation of a 3 mm and a 1 

mm radius cylinder in a Helium II channel. Using the PIV technique, they were able to illustrate a 

surprising effect making allowance for thermal counterflow. We recall that the PIV technique is believed to 

follow the flow of the normal fluid, which carries the entropy. In this result a heat flux of the order 11 

kW/m2 was applied to the bottom of a 200 mm long channel, with a rectangular cross-section. The 

average polymer particle size is 1.7 µm (specific gravity = 1.1). The particle trajectory is visualized 

through the 0.018 x 0.018 m2 square windows. Detailed descriptions of the conditions of the 

measurement are available elsewhere [5]. Fig. 5.14 a) shows the resulting streamlines reflecting the self-

organizing non-linear recirculation. The explanation for these observations is by no means trivial. The two 

component velocities may generate a classical-like-vortex while traveling in the opposite direction to the 

cylinder [75]. 
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Assuming that we can reproduce similar boundary conditions, it is of great interest to compare 

our numerical results with NMHFL’s experimental observations. We simulated asymmetry conditions 

representative of the experimental set-up using a 3-mm radius cylinder. The conditions and geometry are 

shown in Table 5.11 and Fig. 5.15. Boundary conditions are applied to five sides, e.g. side 1, S1, is 

composed of nodes located along the y-axis when x equals 0. The selected time step for the simulation is 

10-5 sec. Fig. 5.14 b) shows the numerical comparison to NHMFL results.  

One fundamental result pertains to the observation flow features similar to the computed particle 

velocities [5]. At steady state condition, the numerical streamlines exhibit the formation of two large eddy 

structures above and below the 3-mm cylinder. Like for experimental results, the top circulating flow 

rotates counter-clock-wise, whereas the lower structure circulation is clock-wise. The pressure gradient is 

negligible, the temperature gradient is observed along the vertical direction of the channel (y-axis). 

 

 

a) NHMFL experimental results [5] . Computed streamlines for particle motion.                                                                
b) Numerical results (644 FE). Temperature profile and  streamlines. 

 
Figure 5.14: Results for a heat flux, q=11.2 kW/m 2 applied on S3 and a bath temperature, T=2.025 K 
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a) Coarse mesh          b) Medium mesh    c) Refine d mesh  
(81 Nodes, 124 FE);   (363 Nodes, 644 FE);   (798 N odes, 1471 FE); 

 
Figure 5.15: 2-D Triangle FE meshes used to simulat e NHMFL experimental set-up 

 

 

Table 5.11: 2-D: thermal counterflow using cylinder s: List of the conditions 
 

 S1 S2 S3 - inlet S4 - outlet S5 

Initial 
conditions 

p =1e5 Pa ; v=0; vs=0; T=2.025 K 

Boundary 
conditions 

vx=0; 

vsx=0 

vx =0; vy =0; 

vsx=0 

vy=0 

T=2.03 K 
(q=11.2 kW/m2) 

T=2. 025 
K 

p=0.1 MPa 

v.n=0 

vs.n=0 

 

Using the same principle, several numerical models were tested to study the influence of the 

boundary conditions and the presence of the large eddy structures. For instance, the eddy structures are 

obviously shaped when large heat fluxes are applied. For those large heat fluxes, it is worth noticing that 

the upper large eddy structure is disappearing. The following two cases illustrate this observation.  

Fig. 5.16 shows the temperature distribution and the normal velocity streamlines obtained if 25 

kW/m2 is applied on the side S3. For three different mesh sizes, we observe large eddy structures.  
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       a) Coarse mesh (124 FE);        b) Medium me sh (644 FE);   c) Refined mesh (1471 FE); 
 

Figure 5.16: Temperature distributions for the boun dary condition: 2.00 K-2.03 K.  
The streamlines represent the normal velocity compo nent (applied heat flux is 25 kW/m 2) 

 

The top structure (rotating counterclock-wise) observed in the previous case (q=11 kW/m2) is 

vanishing whereas the bottom structure grows and remains stable at steady-state. As a possible 

interpretation, we could speculate that the enhancement of the lower structure relates to the growing 

contribution of the superfluid component w.r.t the Gorter-Mellink turbulence.  

The next example underlines the numerical results obtained if we inversed the temperature 

gradients between S3 and S4. Figure 5.17 shows the streamlines resulting of a 40 mK temperature 

difference applied across a mesh composed of quadrilateral finite elements. Intuitively, we expect to 

observe a symmetrical circulating flow pattern. The transient results show a different behavior. Actually, 

the results can be biased by the numerical technique, which is initialized by calculating solution for the 

nodes located on the x-axis (y=0). However, like for the previous example, we perceive two counter-

rotating structures during the early development of the structures. 
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a) Quadrilateral mesh (315 FE);         b) Heat app lied on S3;          c) Heat applied on S4;  

 
Figure 5.17: Temperature distribution and streamlin es (vn) for inverted boundary conditions (2.00 K-2.04 K) 

 

 

Let’s now consider different temperature conditions and applied heat flux. Fig. 5.18 shows the 

existence of the upper and lower eddy structures, when 11 kW/m2 is applied across two different Helium 

II bath temperatures. Although the patterns are confirmed, the flow features are not very stable. 

 
    a) Bath temperature is 1.6 K (644 FE);                                        b) Bath temperature is 2.025 K (644 FE); 

 
Figure 5.18:  Temperature gradients and streamlines  for different temperature levels. q=11 kW/m 2 
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Finally, Fig. 5.19 presents a similar comparison for a larger heat flux, q=25 kW/m2. 

 

 

 a) Bath temperature is 1.8 K;                                      b) Bath temperature is 2.0 K; 
 

Figure 5.19:  Temperature gradients and streamlines  for different temperature levels. q=25 kW/m 2 
 

To conclude this section, we need to underline that for the given 2-D simulations, the numerical 

solutions show that the net mass flow exists in the Helium II bath. As expected, in most of the cases 

studies, the motion of the normal and superfluid components are related. This observation was also noted 

by other researchers [67] [66]. We also note that the large eddy structures are moving periodically and 

their position depend on the choice of the boundary conditions.  

The mechanisms are similar to the one suggested in the previous chapter.  The removal of the 

influence of the gravity from the PDE doesn’t affect the resulting velocity pattern. No classical turbulence 

can be referenced, since the inertia and viscous terms are dropped in the governing equations. Although 

no convective term is included in the governing equation, we nonetheless observe a convective cell-type 

structure. A laminar flow would appear if we were to consider a pure Euler flow. No diffusion is used.  
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Artificial diffusion is used to prevent oscillation of the quantities, but doesn’t have any impact on 

the generation of the large eddy structure. According to the scaling analysis, this term is 3 orders of 

magnitude smaller than the mutual friction effect.  

No precise quantitative analysis can be extracted from this model. Only a qualitative behavior of 

the flow is of interest. Three important considerations must be taken into account when comparing 

numerical to experimental data.  

1- We assume that the streamlines obtained by the PIV technique display a combination of the two-fluid 

velocities. The particle follows the motion of the normal velocity. In reality we know that a slip velocity 

and/or the interaction between the particle, the normal and the superfluid component must be taken 

into account. From Section 5.5, measurements performed in a classical counterflow channel revealed 

a factor two difference between the expected (vn) and measured (Up) velocity of the particle. Several 

research groups have been investigating these dynamics [76][77]. 

2- Another limitation is that the mesh used is relatively coarse, due to the required computing capacity 

used to simulate relevant test cases using a basic PC. The current results make use of a basic 

computing capacity, e.g. dual core, Intel® processor, 2.2 GHz, 4 GB of installed memory (RAM). Note 

that the examples chose do not exhaust the code capabilities. 

3- Finally the boundary conditions are only a best-guess of the exact experimental conditions, e.g. the 

mesh is limited to the observation windows in the PIV experiment. No temperature measurement was 

used to confirm the condition applied. 

5.7.2 Applications using a Sphere in a 3-D mode – D rag Coefficient 

The primary objective of this section is to introduce another potential application of using a 3-D fluid 

code able to solve the two-fluid equations.  In practice, NHMFL conducted experimental test using a 

sphere immerged in a bath of Helium II [78]. They studied the drag coefficient for non-zero flow velocity.  

We aim at completing this analysis in chapter 5.7.3. As a potential study related to the study of 

the drag coefficient in Helium II, we consider a 3-D rectangular mesh including a sphere at its center. A 

0.018 x 0.009 x 0.009 m3 mesh was created using 840 tetrahedral Fes, as shown in Fig. 5.20. 
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Figure 5.20: 3-D mesh representing a sphere in a re ctangular channel. 
 

Table 5.12: 3-D thermal counterflow using a sphere:  List of the conditions 
 

 S1 S2 S3 - inlet S4 - outlet S5 S6 S7 

Initial 
conditions 

p=0.1 MPa; v=vS=vsy=vy=(0,0,0); T=2.00 

Boundary 
conditions 

vx=vsx=0 vx=vsx=0 
T=2.03 K 

vz=vsz=0 

T=2.00 K 

vz=vsz=0 

p=0.1 MPa 

vy=vsy=0 vy=vsy=0 v.n=0 

 

A temperature gradient was applied between the top and bottom faces of the mesh.  Fig. 5.21 

shows the temperature distribution on a normal velocity distribution, resulting from thermal counterflow 

around the sphere. The normal and the superfluid velocity components are flowing in opposite direction. 

More refined meshes are needed to observe large eddy structures and we are unfortunately limited by 

current computing capacity. 
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a) Temperature distribution for a 30 
mK gradient (arrows represent v n) 

b) Normal component velocity 
distribution, v nz, (one slice is displayed, 
picturing a 2-D map) 

 
Figure 5.21: 3-D mesh (840 FE) of a 3 mm radius sph ere in a Helium II bath, T bath=2.03 K, 0.01 MPa.  

The thermal counterflow is due to an applied temper ature gradient (2.00 K – 2.03 K) 
 

If we use a larger capacity computing system, the velocity fields of the two components can be 

more accurately simulated. Then, it would become possible to estimate the force due to the normal fluid 

drag, applied on the sphere. Hence we could propose a more accurate explanation of the drag in helium 

II on large obstacle.  

 

5.7.3 Qualitative Expression of the Drag Coefficien t 

In the present Section, we study the expression of the drag coefficient on the small PIV particle 

itself. It is a complement to the previous Section. As the PIV technique maps out the velocity field of 

particles suspended in the fluid, it is not a trivial problem to relate the observed particle motion to the 

individual velocity fields of the normal and the superfluid components in Helium II [5]. Taking into 

consideration the numerical study of the phenomenological behavior of Helium II, we attempt to 

understand PIV measurements obtained by NHMFL.  
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On the one hand, the study of the particle dynamics in a classical fluid flow is detailed in 

Appendix 8.3. That subsection, therein is dedicated to study the influence of the drag coefficient in a 

normal Newtonian fluid. This earlier study allowed us to better identify the behavior of particles in PIV 

technique. This subsection has been dedicated to a mathematical formulation and numerical application 

to PIV results obtained in other laboratories, e.g. it has been supporting potential explanation to the 

experimental observations [1]. 

On the other hand, the use of the two-fluid model doesn’t account for the microscopic behavior of 

the dynamics of Helium II, these qualitative results could reproduce large eddy structures as observed in 

nature. We propose a bridge between the experimental results and the numerical one, by using the Drag 

coefficient as a tool to communicate between the two. 

Let’s return to the fundamental experimental measurement involving the thermal counterflow. Fig. 

5.23 to 5.24 are used to predict the difference in velocity between the particle and the fluidPvn- UpT. The 

particle may witness a slip velocity if the buoyancy is not ideal. In addition, the influence of “Gorter-Mellink 

turbulence” is important due to the fact that the small particles can be trapped in vortices and be driven 

away from the normal fluid trajectory. The force interacting between the particle, normal fluid and 

superfluid system can only be fully understood if we account for microscopic scale effects. 

Phenomenological explanations are being attempted elsewhere and encourage experimental 

measurement.  Nevertheless, we can foresee that the general particle Drag can be approximated in the 

flow by simple equations. Typically, the Reynolds number reduces to the normal component velocity and 

its viscosity is used to characterize the degree of “excitation” of the fluid.  Still, this dimensionless quantity 

refers to an inertia term, which is far from being the signature characteristic of superfluid behavior. 

Instead the degree of “excitation” of Helium II, as shown in PIV measurement can be described in a more 

empirical way.  

To understand these surprising experimental results, a theory has been developed [77]. In this 

theory the relaxation time is expressed as follows : 
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V Pvn & UpT & �
� W 0 X+

� W�vn  (5.16) 

where Up is the velocity of the particle, τ the “viscous relaxation time” and Y$ the viscosity of Helium II. We 

complete the scaling analysis, using Eq. 5.16 and the quantity listed in Table 5.1.  
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Table 5.13: Scaling of relaxation time - List of th e dimensionless variables 

 

Dimensionless 
quantity 

o

ot

τ

Type equation here.
 

2

o
vo

op

ρ
 

oo

o

r ρ
τ

ov
 

Value 105 105 10-5 

 

The typical relaxation time is of the order το  = 10-5 s. For the sack of this analysis, if we consider 

steady-state regime, we can then drop the terms 
X+
� e�v;  and  

�fg
�U .  

Following this, we can express the general drag coefficient as :   
 

h!�i � �
V � W�

�P9+MjIT (5.18) 

 
From the heat transport properties of Helium II, we consider the non-turbulent regime, where the 

pressure difference is applied proportional to the temperature difference. We make here the 

approximation of an ideal flow and use the London’s equation : 

 ∆ � ' · ( · ∆� (5.19) 
 
We recall that the temperature gradient can also be expressed as a function of the heat flux and 

the Gorter-Mellink coefficient as follows : 
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(5.20b) 

where d is the characteristic length (e.g. pipe diameter or distance between plate), k$  is the normal fluid 

viscosity and β takes on values of 2 for parallel plates and 32 for tubes [3]. 

These equations are for a 1-D pipe flow. The general expression is divided in two terms :  

- A linear term representative of the laminar regime , which includes the viscous effect 

- The power-3 “turbulent” regime term, which is the signature of Gorter-Mellink mutual friction. 

 

Using the same guiding principle, we want to express the Drag coefficient as a contribution of a 

linear term and a dominating power-3 term. 

 h!�i � �$+
����P9+MjIT C 


l�D 0 m�+
�,nP9+MjIT C 


l�Do
 (5.21) 

In practice, the heat fluxes considered in the experimental results are larger than the critical heat 

flux at the given bath temperatures. Indeed, the published “pseudo” Reynolds numbers are in excess of 

104. For this reason the linear term in the above equations become negligible.  

 To (very) first order, the Drag can be interpreted by comparing the numerical and experimental 

data.  

From experimental results, we know P#$ & p�T for large heat flux [1]. In those cases, the turbulent 

regime is established and the linear contribution of the Drag can be neglected. Therefore, we attempt to 

express the particle friction using experimental data : 

   h!�i � �
V  � m�+

�,nP9+MjIT C 

l�Do

  (5.22) 

We can now plot the relaxation time, τ, as shown in Fig. 5.22. 



 

Figure 5.22 : Relaxation time obtained from experimental measur ement
 

Providing that Eq. 5.22 expresses the Drag coefficient and is well d

(Q/ST)3, we obtain Fig 5.22 using the same experimental results.

Fig. 5.23 shows that the proposed Drag coefficient is

temperature.  

: Relaxation time obtained from experimental measur ement

expresses the Drag coefficient and is well described by the quantity 

using the same experimental results.  

shows that the proposed Drag coefficient is strongly depended on 

104 

 

 

: Relaxation time obtained from experimental measur ement  [1] 

escribed by the quantity 

 the helium II bath 



105 

  

 

Figure 5.23: Drag expressed as a function of (q/sT) 3  and experimental measurement [1] 
 

 

Using the fits obtained for the different bath temperatures; we can solve and express the Drag 

coefficient as a function of temperature. The coefficients, a, of the linear trend lines (Drag = a.T), obtained 

for the experimental temperature levels studied, are listed in Table 5.14.  

Finally, using these values, we attempt to express the Drag coefficient as a simple function of the 

temperature. The best fit that we have obtained is shown below and the errors to the experimental results 

are compared in Table 5.14. 



 

Figure 5.24 : Drag coefficient expressed as a function of the t emperature
 

Table 5.1

T a 

1.62 0.1495

1.65 0.1771

1.68 0.2526

1.7 0.334 

1.77 0.968 

1.8 1.2758

1.9 5.032 

2 37.46 
 

Numerical results expressing the normal velocity field and the 

coefficient could be used to further analyze experimental results.

assumptions have been considered in this section, e.g. according to the scaling analysis, we have 

neglected the viscous term in order

London’s equation and obtained Eq. 5.20a and Eq. 5.20b. 

corrects, the particle friction can be obtained as a Gorter

5.22. 

: Drag coefficient expressed as a function of the t emperature

Table 5.14: Data for solving the linear fit, Drag=a.T 
 

fit error fit {aT=Drag} 

0.1495 0.333 0.18     

0.1771 0.494 0.32 Drag=c1*Tc2 

0.2526 0.729 0.48 c1= 1.0109E-05

 0.941 0.61 c2= 21.5613799

 2.246 1.28 

1.2758 3.226 1.95 

 10.35 5.32 

 31.28 -6.18 

Numerical results expressing the normal velocity field and the above expression of the drag 

coefficient could be used to further analyze experimental results. Several approximations and 

assumptions have been considered in this section, e.g. according to the scaling analysis, we have 

neglected the viscous term in order to obtained Eq. 5.18; we assume an ideal flow in order to use the 

London’s equation and obtained Eq. 5.20a and Eq. 5.20b. Providing that the above assumptions are 

, the particle friction can be obtained as a Gorter-Mellink equivalent expression as
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: Drag coefficient expressed as a function of the t emperature  

05 

21.5613799 

above expression of the drag 

Several approximations and 

assumptions have been considered in this section, e.g. according to the scaling analysis, we have 

to obtained Eq. 5.18; we assume an ideal flow in order to use the 

Providing that the above assumptions are 

Mellink equivalent expression as shown in Eq. 
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6 OPENING TO FUTURE STUDIES 
 

The study presented in this dissertation offers a powerful numerical tool to analysis the hydro-

dynamics behavior of Helium II up to a 3-D space. The test cases studied above make use of coarse 

meshes, hence allowing to use a simple PC with short computer time. For the sake of precision it would 

be interesting to compare those results with refined meshes obtained with supercomputers or larger 

computational capacity. e.g. Section 5.7.2. exhibits results of a 3-D mesh, which cannot describe large 

eddy structure in 3-D due to the resolution of the model. If a refined mesh was available, this study could 

enhance the understanding of the drag coefficient and the whole PIV measurement technique. 

The qualitative results obtained in Section 5.7.3. need to be refined. If we assume that the 

phenomenological friction term introduced by Gorter and Mellink is appropriate for thermal counterflow in 

Helium II, we could express the drag coefficient as the sum of a viscous-like term and a Gorter-Mellink-

like term. The scale of those two terms could be further analyzed w.r.t. experimental and numerical 

results. The final analysis could confirm the Gorter-Mellink equivalent expression for particle friction.  

In other words, a deeper understanding of the influence of the drag coefficient would permit to 

model results of the PIV measurement using the macroscopic approximation of the two-fluid model. 

Numerous additional subjects could be explored using the new 3DHeliumSolver, e.g.: one of the 

important tests is to include forced flow (v > 0) solutions. For that matter we would not neglect the viscous 

term in the governing equations.   

 

7 CONCLUSION 

A new derivation of Helium II hydrodynamics approximations based on the two-fluid model and 

the theory of Gorter-Mellink mutual friction was presented and summarized. Qualitative and quantitative 

examples were chosen to validate the 3DHeliumSolver. We were able to reproduce experimental results 

obtained in a 1-D,  2-D and 3-D spaces.  
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A new set of equations were developed to account for explicit variables; pressure, normal and 

super-fluid component velocities and temperature.  The use of these variables has the advantage that the 

forcing terms in the equations are implicitly solved. Specifically, pressure is the driver of flow, while 

temperature drives heat flux. Using these as variables achieves a large degree of stabilization in the 

numerical solution without resorting to special techniques, or iterations. This can be used to increase the 

time step much beyond the Courant limit (by one to two orders of magnitude) and still achieve stable 

solutions, and can be applied if the scale of sound propagation is not of direct interest in the solution, 

which is the case for quasi-steady-state heat transfer in He-II. The governing equations involved are 

highly non-linear, implying challenging numerical analyses. The numerical implementation in the three-

dimensional solver of the resulting system of partial differential equations converges based on the Finite 

Element technique. 

The modeling principles necessitated transforming a portion of an existing one-dimensional code 

to a two- dimensional and three-dimensional code capable of solving hydro- and thermo-dynamics 

problems, e.g.  convection-diffusion and Euler flow. A staged approach was used to construct the 

package 3DHeliumSolver assuring that the algorithms were sufficiently stable and robust to solve the 

generic PDEs. The most desired results to validate this code is a quantitative and qualitative modeling of 

the problem arising from experimental measurements exhibiting unique properties the Helium II. While 

optimizing the computing time, powerful algorithms permit the modeling conditions of Helium II flow based 

on the Landau-Khalatnikov two-fluid model. 

Test cases were chosen to validate the new model, namely the calculation of the speed of 

second sound and heat transfer by thermal counterflow. Numerical results agree within 4 % with 

predictions in the temperature range of interest. We have shown that internal convection can be 

successfully simulated, and provide the opportunity to explore further experimental results in 2-D and 3-D 

spaces. A qualitative study includes the observation of a large eddy structure generated by thermal 

counterflow passing a cylinder. The 3DHeliumSolver can reproduce similar behavior of the Helium II 

dynamics observed using PIV technique. The 2-D simulation allows us to extract the temperature profiles 
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and the distinct velocity fields and might be used as an additional diagnostic tool for analyzing the results 

of the experiment. Although the convective term and the viscous terms are neglected in the governing 

equation, the flow passing the cylinder doesn’t exhibit the behavior of the Euler flow; instead convective-

type cells appear upstream or downstream of the cylinder. It is worth noticing that the choice of the 

boundary conditions impacts the position of the large structure.  For large heat flux, we observe the 

enhancement of one of the two large structures, opening the queries to simulate various conditions in 

order to better understand the phenomenological behavior of Helium II.  

The current results make use of a basic computing capacity, e.g. dual core, Intel® processor, 2.2 

GHz, 4 GB of installed memory (RAM). The approximations elected for the development of the software 

allow its use on a simple PC with short computer time, making it the first user-friendly tool available to the 

whole applied cryogenics community. 
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APPENDICES 

 

1.1 Notation for the Differential Operators  

The following convention has been used for operator application ∇  to a scalar s, a vector v and a 

matrix m : 
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1.2 Artificial Diffusion detailed study 

If we add a classical isotropic diffusion in the pressure, velocities and temperature equations of 

our PDE system, the coefficient will be expressed as  

  βδ hc idart =  (AII.1) 

where idδ  is the tuning parameter, equal to 0.5 by default, h is the mesh size and β is the convective 

velocity vector.  

The characteristic parameter of such a fluid flow is the Peclet number, which can then be 

expressed as   
β

ββ

hc

h

cc

h
Pe

art +
=

+
=

2)(2
 (AII.2) 

 

For our third study of 3DHeliumSolver integration and modeling abilities w.r.t. convection-diffusion 

we yet again turn our attention to the general convection-diffusion equation:  
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+ − =
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2 0  (AII.3) 

This is the well-known trouble maker which has kept numericists active for several years [18]. The 

model chosen could represent the propagation of a temperature wave (u is the unknown, i.e. 

temperature) in a fluid that moves with velocity v and has diffusivity α, under the assumption that any 

source term (volume heating, heat transfer at wetted walls) is negligible. Alternatively it could represent 

convection and diffusion of the density (u) of a species in a moving fluid. The structure of the model 

equation is that of a parabolic partial differential equation (PDE), reducing to first order pure convection 
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when α=0. We call this case the hyperbolic limit of the equation (in analogy with the wave propagation 

phenomena in hyperbolic second order equations). In the case that the fluid is at rest, i.e. v = 0, the model 

equation reduces to second order pure diffusion. Depending on the values of v and α the wave 

propagation will be of diffusive type or convective type. In correspondence, the value of the Peclet 

number Pe , defined as 

  
α
L

Pe
v

=  (AII. 4) 

ranges from 0 (for pure diffusion) to ∞ (for pure convection). An example of a solution of a convective 

diffusive problem is given in Fig. AII.1 (below) for various values of Pe. From the mathematical point of 

view, a real change in the character of the solution to the Eq. AII.3 is seen only at the limiting case of 

Pe=∞, where the order of the PDE decreases and the solution changes functional class. In practice, 

numerical solution of the equation above will be increasingly difficult at increasing Peclet number, i.e. 

tending from pure diffusion to pure convection. This is the reason why special numerical techniques must 

be used to deal with convection diffusion problems. 

 

To gain insight in the more fundamental reasons for the difficulties, we look at the general 

properties of the exact solutions of Eq. AII.3. The solution of a PDE of the type of Eq. AII.3 in the general 

case of finite diffusivity belongs to the Hilbert space78 H1, meaning that it is continuous and that its 

derivative belongs to L2. In fact, in most of the cases, the solution belongs to H2, (i.e. both the first and 

second derivatives of the solution belong to L2). This fact expresses the fundamental regularity of the 

diffusion process. In the hyperbolic limit, however, the solution lies in the Hilbert space H0 meaning that it 

belongs to L2, but that its derivative in general does not. The physical phenomenon indicating this loss of 

regularity is the appearance of shocks (discontinuities) in the solution, as often encountered in inviscid 

and viscous fluid flow simulations [18]. 
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Let us now take the model problem, Eq. A. AII.3 above, and, following normal practice in the 

frame of Finite differences [18], substitute a second order approximation in space and time of the 

derivatives. We can then solve numerically for the same conditions presented in Fig. AII.1 (in the case of 

Pe=∞). The results are shown in Fig. AII.2. Evidently, the exact solution is strongly deformed, oscillations 

appear at the front and the sharp front itself is smeared.  

With the intention of curing some of these problems, the concept of upwind differencing was 

introduced. Upwinding consists in taking one-sided differences for the first-order space derivative, biased 

along the velocity direction, justifying this approximation with the fact that a moving fluid can only be 

affected by what is coming along the characteristic lines (i.e. what is upstream). The use of one-sided 

differences results in a strong damping of the oscillations, but also in a further deformation of the shape of 

the front, a smearing in the space profile, as shown in Fig. AII.3. This is caused by the fact that this 

upwind method can only be accurate to first order in space. Physically, this corresponds to adding a 

spurious second order space derivative term to the equation, i.e. a diffusion. We saw in Fig. AII.1 that the 

effect of a diffusion in Eq. AII.3 is the front smearing, exactly as observed in the numerical simulation of 

Fig. AII.3. 

With similar reasoning, we expect a second order numerical scheme to be free from spurious 

diffusion in the solution. However in this case the error appears as a third order space derivative, which is 

equivalent to a dispersion, a scattering in the modes into which the solution can be decomposed. For the 

initial condition of a step function the mode decomposition has a very high frequency content, so that a 

dispersion generates significant wiggles around the front. 

Although the model problem Eq. AII.3 is very simple, it generates the full spectrum of problems 

associated with hyperbolicity. A general conclusion that can be drawn from the above observations is that 

while second order methods provide a better definition of the front sharpness, compared to the first order 

upwind methods, they will result inevitably in wiggles in the solution. So far, however, a pure 

phenomenological explanation is given. The deeper question is why first order hyperbolic equations pose 
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such difficulties, in contrast e.g. to second order, parabolic problems where standard second-order 

differencing results in fully satisfactory algorithms.  

Such a question can be explained elegantly in the context of finite elements (FE). The Galerkin 

weighted approach generates a nodal equation which is identical to that obtained by finite difference (FD) 

central differencing. It follows that the properties of a FE approximation can be directly extended to the 

corresponding FD approximation. Generally the FE solution of a differential equation consists of functions 

belonging to H1, e.g. piecewise continuous polynomials, with discontinuous but integrable derivatives over 

the discretized domain. But as we noted above the general solution to a first order hyperbolic problem is 

in a wider class of function, namely H0. This means that both centered FD and Galerkin FE look for a 

solution in a class of functions that does not necessarily contain the exact solution to the problem. In 

other words, both methods try to approximate the problem as best as they can do, but using functions 

that are not discontinuous enough to represent the real solution. As it is the case for an unstable 

interpolation of a set of points, the interpolating function fails, wiggles are generated (trailing/leading 

waves) and the solution can indeed become unstable. 

On the other hand, it can be proven that the use of the FD upwinding in the context of a more 

general class of FE approximations (Petrov-Galerkin weighting) corresponds to a transformation of the 

equation to be solved into a better behaved system78, which, in particular steady-state cases, can be 

solved exactly by FE (and proper FD upwinding). Again, in other words, the functional class to which the 

solution belongs is lowered so that a well-behaved approximation can be found. This procedure, however, 

is applicable only to the steady-state limit, and so far no general optimal procedure could be found for the 

transient case. 

For the moment we conclude that a standard solution of a first-order hyperbolic problem implies 

fundamental difficulties in the definition of moving fronts, where these are either affected by spurious 

diffusion (which makes the solution monotonous) or by oscillations, however, various techniques can be 

employed to address this situation. 
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Figure AII.1. Solution to the convection-diffusion model problem Eq. AII. 3 in the domain x=[- ∞∞∞∞...∞∞∞∞] 
for a step in the unknown at x=0 and different valu es of the Pe number. Pe=0 corresponds to pure diffu sion, 
Pe=∞∞∞∞ to pure convection. Constant properties are assume d in the solution. The arrow marks the increasing 

time direction. 

 

Figure AII.2. Numerical solution of the convection- diffusion model problem Eq. AII. 3 obtained with a 
FD scheme of second order accuracy in space and tim e (central differences). The arrow marks the increa sing 

time direction. 

 

Figure AII.3. Numerical solution of the convection- diffusion model problem Eq. AII. 3 obtained with a 
FD scheme of first order accuracy in space (upwind differences) and time (backward differences). The a rrow 

marks the increasing time direction. 

 

t
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1.3 Particle Dynamics in a Fluid Flow 

A necessary condition for the PIV measurement to yield accurate results is that the particle motion 

imaged is as close as possible to the fluid motion to be measured [78][78]. This condition is usually 

expressed in terms of the maximum slip velocity [78]. To assess the dependence of the slip velocity on 

the particle characteristics and on the flow conditions we need to examine in some detail the dynamics of 

a particle in a fluid flow. 

In general the particle motion is determined by the equilibrium of the particle inertial force, the drag 

force FD exerted by the fluid on the particle, the body force FB due to the density difference between fluid 

and particle, and the force FA caused by pressure gradients due to fluid acceleration [78]. For simplicity, in 

the following we consider the case of rigid spheres floating in a 1-D flow field, so that the vector force and 

velocity fields reduce to scalars. 

The drag force FD on a particle moving in a fluid can be written in general as 

 2)(
2

1
XUAreaCF fDD ′−= ρ  (AIII.1) 

where CD is the drag coefficient, Area is the projected area of the particle and ρf is the fluid density. In 

general the drag coefficient can be obtained using experimental correlations.  

In the limit of small flow Reynolds number (Re < 0.1), the drag coefficient is given by 

 CD =
24

Re
 (AIII.2) 

and the Reynolds number of the relative flow of the fluid around the particle is defined as 

 Re=
ρ f U − ′ X ( )D

µ
 (AIII.3) 

where D is the particle diameter and µ is the fluid viscosity. In the case of higher Reynolds number, Re > 

0.1, various correlations can be found in literature. Several of them can be cast in the following form 



122 

  

                                                                                                                                                                           

 CD =
24

Re
1+ f Re,Kn( )( ) (AIII.4) 

which is a correction of Eq. AIII.1 through a simple function f of the Reynolds number and of the Knudsen 

number Kn (the Knudsen number is the non-dimensional ratio of the molecular free path and a 

characteristic length of the flow, and is a measurement of the rarefaction of the flow). 

The body force FB is computed in general as follows 

 FB = aV (ρ p − ρ f )  (AIII.5) 

where a is the acceleration, V is the particle volume and ρp is the particle density. Note that with the 

convention chosen in Eq. 6 a positive acceleration along x will result in a positive force in the case of 

particles heavier than the fluid. 

In an unsteady flow an additional force FA arises on the particle 

 FA = Vρ f

dU

dt
+

1
2

Vρ f

d U − ′ X ( )
dt

 (AIII.6) 

where the first term is due to the pressure gradient due to the flow acceleration, while the second term is 

the acceleration force of the virtual mass of fluid, equal to half of the mass displaced by the particle.  

The equilibrium condition for a particle can be finally written as follows 

 ABDp FFF
dt

Xd
V ++=

′
ρ  (AIII.7) 

or, using Eqs. AIII.1, AIII.6 and AIII.7. 
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1 2 (AIII.8) 

Eq. AIII.8 is the general equation governing the motion of a particle in a flow field, and is usually 

referred to as the Basset-Boussinesq-Oseen (BBO) equation [18]. Note that in the form reported above 

we have neglected the Basset history term (tracing the effect of drag in the case of unsteady flow). We 

can finally group terms and substitute for the expression of the drag coefficient Eq. AIII.4 and the 

Reynolds number Eq. AIII.3 to derive the equation for the particle velocity: 
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 ρ 
d ′ X 

dt
=

18µ
D2

1+ f Re,Kn( )[ ](U − ′ X ) +
3

2
ρ f

dU

dt
+ a(ρp − ρ f ) (AIII.9) 

where we have introduced for convenience an effective particle density, given by 

 ρ = ρp +
1

2
ρ f  (AIII.10) 

Eq. AIII.10 determines the evolution of the particle velocity in a known flow field, and can hence 

be used to study the dependence of the slip velocity on the various parameters and measurement 

conditions. This is done in the following sections, where we will consider some special, relevant cases for 

which analytical solutions are found easily. 

 

Negligible body forces, small Reynolds number 

We start our analysis by making the assumption that the effect of the acceleration field 

(gravitational, centrifugal) is negligible, i.e. the body force on the particle is much smaller than the force 

due to drag, pressure gradients and the particle acceleration in the flow field [78]. This is the case when 

the acceleration field is small compared to the particle acceleration in the flow, or when the particle 

density is identical to that of the fluid. We consider in addition that the Reynolds number is small, below 

0.1, so that the drag is given by Eq. AIII.2. In this case the equation for the particle motion AIII.9 can be 

simplified as follows 

 
d ′ X 

dt
+

1
τ slip

′ X ≈
1

τ slip

U +
3
2

ρ f

ρ 
dU

dt
 (AIII.11)  

The time constant τslip, appearing in Eq. 11) governs the relaxation of the slip velocity and is given by 

 τ slip ≈
D2ρ 
18µ

= 1+
1
2

ρ f

ρp

 

 
  

 

 
  τ 0 (AIII.12) 

where the time constant τ0 is defined as 

 τ0 =
D2ρp

18µ
 (AIII.12a) 
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and represents the limit obtained for particle density much larger than the fluid density. 

The analytic solution of Eq. AIII.11 is obtained as the sum of two functions: the general solution of the 

homogeneous equation X’H (i.e. without forcing term) and a solution for the non-homogeneous equation 

X’NH  

 ′ X = ′ X H + ′ X NH  (AIII.13) 

The homogeneous solution X’H is independent of the forcing term, and is given by 

 ′ X H = C1e
−

t

τ slip  (AIII.14) 

where C1 is an integration constant. The non-homogeneous solution, on the other hand, depends on the 

specific fluid flow velocity U(t) considered. We consider here two conditions that are useful to study the 

slip velocity and the velocity error in a PIV measurement: 

- sinusoidal fluid velocity fluctuations )sin( tUU o ω= , representative of changes in the fluid flow at 

a given frequency f=ω/2 π that we wish to follow accurately; 

- injection of particle at rest in a steady flow (step response), providing an estimate of the time and 

displacement necessary for the particles to reach steady-state conditions. 

 

1.3.1.1 Sinusoidal flow oscillation 

The forcing term in the particle equation is given by an oscillating fluid flow [78] 

 )sin( tUoU ω=  (AIII.15) 

and we choose as initial condition to have the particles at rest (as the fluid) at t=0 

 X ' 0( )= U 0( )= 0 (particle at rest) (AIII.16) 

The non-homogeneous solution for this case is 

 ′ X NH = C2 sin ωt + φ( ) (AIII.17) 

where C2 is the amplitude of the particle response in regime conditions (i.e. for long times compared to 

the time constant τslip) and φ is the phase lag. The general solution for the particle velocity is then 



125 

  

                                                                                                                                                                           

 ′ X = C1e
−

t

τ slip + C2 sin ωt + φ( ) (AIII.18) 

The integration constants C1 and C2 and the phase φ lag are determined using the initial condition Eq. 

AIII.16) and by requesting that Eq. AIII.18 is a solution of Eq. AIII.11. The first of these two conditions is 

written as follows 

 C1 + C2 sin φ( )= 0 (AIII.19) 

while the second condition results in 

 ωC2 cosωt + φ( )+
C2

τ slip

sinωt + φ( )=
1

τ slip

U0 sinωt( )+
3

2

ρ f

ρ 
ωU0 cosωt( )(AIII.20)  

The two conditions can be used to compute an explicit expression for the integration constants and the 

phase lag, resulting after some algebra in  

 C1 =
St

1− a

1+ aSt 2

1+ St 2 1− a

1+ aSt 2

U0 (AIII.20a)  

 C2 =
1+ St 2 1− a

1+ aSt 2

 

 
 

 

 
 

2

1+ St 2 1− a

1+ aSt 2

U0 (AIII.20b)  

 tg φ( )= −St
1− a

1+ aSt 2
 (AIII.20c)  

where we have introduced the Stokes number of the particle as the ratio of the particle slip time constant 

to the characteristic time of the flow 

 St = ωτ slip = ω
D2ρ 
18µ

 (AIII.21) 

and the dimensionless group a that is a function of the fluid density and the particle effective density 

 a =
3

2

ρ f

ρ 
 (AIII.21a) 
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The closed form analytical solution is obtained substituting Eqs. AIII.20a, AIII.20b and AIII.20c in Eq. 

AIII.13. 

 

Details of the derivation of the integration constants and phase are shown below. 

Use the formulae for the sum of arguments in the sin and cos functions to obtain from AIII.20. 

 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]=++− φωφω
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2 tt
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
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




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cossin
1

cos 22   

 

( ) ( )tUtU f
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ωω
ρ

ρ
ω

τ
cos

2

3
sin

1
00 +

 

(N2) 

from (N2) derive two independent equations to be satisfied for the term in sin and the term in cos (sin and 

cos are two orthogonal functions and the two conditions must be satisfied independently) 

 

C2 ω cosφ( )+
1

τ slip

sin φ( )
 

 
 

 

 
 =

3

2

ρ f

ρ 
ωU0 (N3) 

 

C2

1

τ slip

cosφ( )−ω sin φ( )
 

 
 

 

 
 =

1

τ slip

U0 (N4) 

the two Eqs. N3 and N4 can be modified as follows (normalization) 

 
C2 ωτ slip cosφ( )+ sin φ( )[ ]=

3

2

ρ f

ρ 
ωτ slipU0  (N5) 
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C2

1

ωτ slip

cosφ( )− sin φ( )
 

 
 

 

 
 =

1

ωτ slip

U0 (N6) 

and added to eliminate the term in sin 

 

C2 ωτ slip +
1

ωτ slip

 

 
 

 

 
 cosφ( )=

3

2

ρ f

ρ 
ωτ slip +

1

ωτ slip

 

 
  

 

 
  U0 (N7) 

Take again the two Eqs. N3 and N4 and modify them as follows (normalization) 

 

C2 cosφ( )+
1

ωτ slip

sin φ( )
 

 
 

 

 
 =

3

2

ρ f

ρ 
U0 (N8) 

 
C2 cosφ( )−ωτ slip sin φ( )[ ]= U0  (N9) 

and subtract them to eliminate the term in cos 

 

C2

1

ωτ slip

+ ωτ slip

 

 
 

 

 
 sin φ( )=

3

2

ρ f

ρ 
−1

 

 
 

 

 
 U0  (N10) 

the ratio of Eqs (N10) and (N7) yields the relation for the tg(φ) 

 

tg φ( )=

3

2

ρ f

ρ 
−1

3
2

ρ f

ρ 
ωτ slip +

1
ωτ slip

 (N11) 

To make the notation more compact we introduce a parameter a given by: 

 
a =

3

2

ρ f

ρ 
 (N12) 

and Eq. (N11) can be written as follows: 

 

tg φ( ) = −ωτ slip

1− a

1+ aω 2τ slip
2

 (N11a) 

Using now the trigonometric relation

 

cosφ( )=
1

1+ tg2 φ( )
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in Eq. (N9) 

 

C2

1− ωτ slip tg φ( )
1+ tg2 φ( )

= U0 (N13) 

we obtain the following value for the constant C2 

 

C2 =
1+ tg2 φ( )

1−ωτ sliptg φ( )
U0 (N14) 

that can be solved explicitly by inserting the result of Eq. (N11) 

 

C2 =

1+ ω 2τ slip
2 1− a

1+ aω 2τ slip
2

 

 
  

 

 
  

2

1+ ω 2τ slip
2 1− a

1+ aω 2τ slip
2

U0 (N15) 

To compute C1 we use the trigonometric relation 

 

sin φ( )=
tg φ( )

1+ tg2 φ( )
 (N16) 

and combine Eqs. (N14), (N16) and the initial condition Eq.(19a), resulting in 

 

C1 = −
tg φ( )

1−ωτ sliptg φ( )
U0 (N17) 

We finally substitute Eq. (N11) to obtain the explicit solution: 

 

C1 =

ωτ slip

1− a

1+ aω 2τ slip
2

1+ ω 2τ slip
2 1− a

1+ aω 2τ slip
2

U0  (N18) 

 

A simple expression can be derived in the limit of large particle density, i.e. ρp >> ρf, in which case a ≈ 0. 

In this case the analytical solution is given by: 
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 ′ X =
U0St

1+ St 2
e

−
t

τ 0 +
U0

1+ St 2
sin ωt + φ( ) (AIII.22)  

and the phase angle is determined by 

 tg φ( )= −St  (AIII.23) 

The physical significance of the results reported in Eqs. AIII.22 and AIII.23 is obvious. After a time large 

enough compared to the time constant τ0 the exponential term in Eq. AIII.23 is negligible and a regime 

oscillation condition is reached. The particle oscillation has a phase lag φ and a reduced amplitude 

compared to the fluid flow. The phase lag and the amplitude reduction increase as the Stokes number 

increases. This is shown in the two examples reported in Fig. AIII.1, where the instantaneous fluid and 

particle velocity (normalized with respect to the maximum fluid velocity U0) are plotted as a function of 

time (normalized to the oscillation period). 

 

Figure AIII.1: Normalized particle and fluid veloci ty as a function of normalized time in case of an 
oscillating flow starting from rest conditions, com puted for negligible fluid velocity and for a Stoke s number 

of 0.14 (left) and 0.7 (right). 
 

A useful measure of the slip velocity between particle and fluid is given by the amplitude error for 

oscillating flow ε, given by 

 ε =
U0 − max ′ X { }

U0

=
U0 −

U0

1+ St2

U0

=1−
1

1+ St2
=1−

1

1+ ω 2τ 0
2

 (AIII.24) 
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Both the amplitude error, and the phase lag are only a function of the Stokes number. Hence the results 

above can be summarized as in Figure AIII.2, where the amplitude error of the particle velocity Eq. AIII.24 

and the phase lag of the particle with respect to the fluid Eq. AIII.23, normalized to π / 2 ) are plotted as a 

function of the Stokes number of the particle motion in the flow. A 1 % amplitude error between fluid and 

particle velocities corresponds to a Stokes number of 0.143. At this Stokes number the phase lag is 

approximately 8 degrees.  

 

Figure AIII.2: Amplitude error and phase lag for pa rticle motion dominated by drag and particle 
inertia (negligible body force), plotted as a funct ion of the Stokes number for oscillating flow at an gular 

speed ωωωω. 
 

From Eq. AIII.24 we can derive useful design limits on the cut-off frequency fc (and the cut-off angular 

frequency ωc = 2 π fc) of the flow that can be tracked with a given amplitude error, once the particle 

characteristics (and hence the time constant τ0) are fixed 

 fc =
1

2πτ 0

1

1− ε( )2 −1  (AIII.24a)

The maximum particle diameter Dc that can be used to track a flow at a specified cut-off frequency fc with 

0.001

0.01

0.1

1

0.001 0.01 0.1 1

Stokes number = ρρρρ pωωωωDp
2/18µµµµ

 

Uo
XUo max'−

2/π
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a given amplitude error can be derived from Eq. AIII.24a substituting the time constant τ0 in terms of the 

particle characteristics, as given by Eq. AIII.12a. 

 Dc =
1

2π
18µ
ρp fc

1

1−ε( )2 −1  (AIII.24b) 

 

Injection of particles initially at rest (step response) 

If we consider a steady flow in which particles are injected with initial zero velocity, Eq. AIII.11 simplifies 

 
d ′ X 

dt
+

1

τ slip

′ X =
1

τ slip

U0  (AIII.11a)  

and the initial condition is 

 X ' 0( )= 0   

The non-homogeneous solution for this case is obvious 

 ′ X NH = U 0   

and the general solution for the particle velocity (the constant C1 is determined through trivial algebra) is 

 ′ X = U0 1− e
−

t

τ slip

 

 
 
 

 

 
 
    

This result can be used directly to estimate the time needed to attain a given slip velocity. Using the same 

definition as in Eq. AIII.24 for the normalized amplitude error, we obtain that in the case of particle 

injection at rest 

 ε =
U0 − ′ X 

U0

=

U0 −U0 1− e
−

t

τ slip

 

 
 
 

 

 
 
 

U0

= e
−

t

τ slip  (AIII.24c) 

As for the case of oscillating flow, in the case that ρp >> ρf the relaxation time τslip becomes identical to τ0. 

To attain a slip of 1 % or less after injecting particles initially at rest the time needed tc is  
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 tc = 4.6τ slip (AIII.24d) 

During this time the particle travels a distance Lc 

 Lc = 4.6τ slipU0  (AIII.24e) 

Shorter relaxation times and distances can be obtained injecting particles with a velocity closer to that of 

the fluid. 

 

1.3.1.2 Dominating body forces, small Reynolds numb er 

Another case of interest for design and sizing purposes is obtained assuming that the particle 

dynamics is dominated by the drag and body force, neglecting the effect of the force due to the particle 

and fluid acceleration. This is for instance the case of a 1-D flow that has reached steady-state, so that 

the time variation of the particle velocity magnitude and direction is negligible. For simplicity we consider 

the body force is a constant in the equilibrium equation. Relevant examples are particle settling in a 

gravitational field, for which a=-g, or centrifugal settling at angular frequency ω, for which a = ω X0
2, where 

the coordinate X0 is a characteristic radius of the centrifuge [4-5]. Finally, also in this case we make the 

assumption of small Reynolds, so that the drag coefficient is given by Eq. AIII.2. In this case the equation 

for the particle motion AIII.9 can be written in the following form 

 0 ≈
18µ
D2 (U − ′ X ) + a(ρp − ρ f )  (AIII.25) 

and the analytical solution for the slip velocity is straightforward 

 U − ′ X = a
ρp − ρ f

ρp

ρpD2

18µ
= a

ρp − ρ f

ρp

τ0  (AIII.26) 

As evident from Eq. AIII.26, the slip velocity due to particle settling in the acceleration field is larger at 

increasing difference between particle and fluid density. This effect is minimized matching the two 

densities so that particles become buoyancy neutral. 
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1.3.1.3 Summary of relevant expressions for particl e dynamics 

The most relevant expressions necessary to choose the seed particles based on slip velocity 

considerations are summarized below [78]. 

 

Relaxation time for slip velocity (comparable particle and fluid density): 

 τ slip = 1+
1

2

ρ f

ρp

 

 
  

 

 
  

D2ρp

18µ
 (AIII.12-bis) 

Relaxation time for slip velocity (negligible fluid density): 

 τ0 =
D2ρp

18µ
 (AIII.12a-bis) 

Relative velocity error for oscillating flow at angular frequency ω (negligible fluid density and body forces): 

 ε =1−
1

1+ ω2τ0
2

=1−
1

1+ 2πf( )2τ 0
2

 (AIII.24-bis) 

Phase error between particle and fluid oscillation (negligible fluid density and body forces): 

 tg φ( )= −ωτ0 = −2πfτ0  (AIII.23-bis) 

Critical (maximum) frequency tracked by a particle of given relaxation time and for specified relative 

velocity error (negligible fluid density and body forces): 

 fc =
1

2πτ 0

1

1− ε( )2 −1  (AIII.24a-bis) 

Critical (maximum) diameter of a particle that tracks the critical frequency with specified relative velocity 

error (negligible fluid density and body forces): 

 Dc =
1

2π
18µ
ρp fc

1

1−ε( )2 −1  (AIII.24b-bis) 
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Time needed to track a constant fluid velocity with a given relative velocity error, for particles injected at 

rest in the flow (negligible body forces): 

 tc = −ln ε( )τ slip (AIII.24d-bis) 

Travel length needed to reach the desired tracking accuracy (negligible body forces): 

 Lc = −ln ε( )τ slipU0 (AIII.24e-bis) 

Settling speed in an acceleration field (negligible inertial forces): 

 U − ′ X = a
ρp − ρ f

ρp

τ 0 (AIII.26-bis) 
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