

THE LIQUID HYDROGEN SYSTEM FOR THE MUCOOL TEST AREA

C. Darve¹, A. Klebaner¹, A. Martinez¹, B. Norris¹, L. Pei¹, W. Lau² and S. Yang²

¹Fermi National Accelerator Laboratory Batavia, IL, 60500, USA

²Oxford University, Physics department OX1 3RH, UK

Cryogenic Engineering Conference 2003

Headlines

Introduction to Muon Ionization Cooling R&D (MuCool)

- Organization & Mission
- Principles and proposal

Cryogenics at MuCool Test Area

- MTA Presentation
- Helium Cryogenic Facilities
- MTA Cryo-System Flow Schematic
- Hydrogen System Stability Issues

Forced-flow LH₂ Circuit

- Components and Requirements
- LH₂ Absorber Cryostat
- Heat Transfer Numerical Calculations

Conclusions

C. Darve

Introduction to Muon Ionization for Cooling R&D (MuCool)

Muon Collaboration

MuCool Collaboration: 18 institutions from US, Europe and Japan

Muon Collider and Neutrino Factories ["Recent progress in neutrino factory and muon collider research within the Muon Collaboration", Physical review special topics- Accelerators and Beams, vol. 6, 081001 (2003)]

Mission

- Design, prototype and bench test all cooling-channel components (RF, LH₂ absorber, etc.)
- Support cooling demonstration in muon beam (MICE)
- Dev. of intense ionization beam (400 MeV beam up to 2.4x10¹⁴ p/s: 570 W in 35-cm LH₂ absorber)

Introduction to Muon Ionization Cooling R&D (MuCool)

Introduction to Muon Ionization Cooling R&D (MuCool) - Proposal

The beam is "cooled" by energy loss in the cooling channel; both transverse and longitudinal momentum is lost to collisions with atomic electrons but the longitudinal momentum is restored by the RF acceleration between the absorbers.

201 MHz RF cavity LAB G MAGNET	Item	Value	Unit
	Volume of the LH ₂ loop	25	liter
	Volume of the vacuum space	35,000	liter
21 cm diameter Absorber inserted in L/G Magnet	Refrigeration capacity	500	W
	Refrigeration max mass flow	27	g/s
	Refrigeration operating temperature	14	K
Energy deposition by intense ionization beam in LLL absorber	Refrigeration operating pressure	0.2	MPa
Energy deposition by intense ionization beam in LH ₂ absorber	LH ₂ heat removal capacity	500	W
	LH ₂ operating temperature	17	K
	LH ₂ operating pressure	0.12	MPa
Up to 300 W (nominal at 150 W) thermal power due to beam	LH ₂ density	74.28	kg/m3
simulation to remove from LH ₂ absorber	H ₂ boiling point 0.12 (0.21 MPa)	21 (24)	K
	H ₂ freezing point at 0.12 (0.21 MPa)	14	K
→ Refrigeration: subcool hydrogen @ 17 K	LH ₂ viscosity	3.05	10 ⁻⁶ Pa-s
	LH ₂ specific heat	7696	J/Kg-K
\rightarrow Two LH ₂ absorbers heat transfer modes:	Heat of vaporization	445.6	KJ/Kg
convection and forced-flow types	LH ₂ thermal conductibility	97	mW/m-K
	20 degree C: liquid H2 volume ratio	790	-

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

Sept. 23 rd 2003

Proposed system characteristics

Cryogenics at MuCool Test Area

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

Cryogenics at MuCool Test Area

Construction of MTA building with beneficial occupancy or October 2003:

→ Test of convection type LH_2 absorber till March 2003 → Test of forced-flow LH_2 absorber, RF cavities, etc.

Helium Cryogenic Facilities

Flow schematic:

Compressor Room

• Two 400 HP 2-stage oil injected screw compressors

Refrigerator Room

- Tevatron satellite refrigerator used normally for <5 K operation (to be operated at 14 K output)
- Dual cylinder 30 K reciprocating expansion engine
- Transfer line connections to experimental hall which includes 5K, 20K, 80K circuits

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

MTA Cryo-system Flow Schematic FERMILAB

BD/Cryogenic Department

Hydrogen System Stability Issues

The cryo-system was designed in accordance with :

- American Society of Mechanical Engineers (Boiler and Pressure Vessel Code, ...)
- National Electrical Code (art. 500, etc.)
 Class I Division II, Group B or intrinsically safe
- Fermilab Environment Safety & Health Code (art. 5032,etc.)
- Compressed Gas Associates
- FERMILAB: " Guidelines for the Design, Fabrication, Testing, Installation and Operation of LH2 Targets 20 May 1997" by Del Allspach et al. Fermilab RD_ESH_010– 20 May 1997
- NASA: " SAFETY STANDARD FOR HYDROGEN AND HYDROGEN SYSTEMS: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation"

Ignition sources (NASA Guidelines)

- Electrical sparks or static electricity (breaking electrical connections, nylon clothing, etc.
- Friction sparks (metal on metal, stone on stone)
- Impact sparks (sandblasting)
- Auto-ignition (hot points, etc.), Temperature 584 C

Minimum spark energies for ignition of H_2 in air is 0.017 mJ at 1 atm, 300 K Lower pressure for ignition is ~1 psia (min abs. 0.02 psia // 1.4 mbar)

C. Darve

Hydrogen System Stability Issues

Elements of design to lower the risk of ignition and safe the cryo-system

- ✓ Safety Review by Fermilab LH₂ experts.
- ✓ Hazard analysis (What-if, FMEA, etc.).
- Operating procedures, emergency procedures.
- Instrumentation and components testing.
- \checkmark Training on use of LH₂.

Redundant safety system.

- \checkmark 25 liters of LH₂ can be contained at SPT in the vacuum buffer tank: no secondary container.
- ✓ Material recommended: Aluminum, austenitic steel, copper, titanium, PTFE, Kel-F, etc.
- Radiation hardness: 0.11mS/hr (11mrem/hr).
- \checkmark Purged venting line with N_{2.} , barrier, vent and exhaust system.
- ✓ Instrumentation choice: NEC, capacitance type, Output 4-20 mA signal to lower the risk of ignition.
- Safety PLC for process controls, warning, and interlock mechanisms (QUADlog).
- ✓ Weld and VCR fitting are preferred to flange or other fitting. Doubled-seal flange.

C. Darve

FERMILAB BD/Cryogenic Department

LH₂ Circuit – Components

♦ LH₂ absorber

LH₂ pump

✤ He/ H₂ counter flow heat exchanger (500 W)

	LH ₂	He	Unit
Р	17.6	30.7	psia
Taverage	17.5	15.8	K
m	63	21	g/s
r (P , T)	74.28	5.7	ko/m ³
Cp (P,T)	8082	5353	J/kg-K
h (P , T)	171.4	32.6	μpoise
l (P , T)	100	24	mW/m-K
Pr	1.382		
Aflow	14.55	1.56	cm^2
G	4.33	13	q/cm^2-s
De	0.336	0.378	cm
Ahex	11.25		cm^2/m
h	0.109	0.183	W/cm^2 -
U	247		W/K

✓ Transfer lines with cryo-system (H₂, He, N2)
 ✓ Instrumentation (PT, TT, LT, FT, IT, HR, etc.)

✓ Electro-pneumatic valves

✓ Piping (1", 2" IPS)

 \checkmark LH₂ buffer (1 liter, LT, etc.)

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

LH₂ Circuit - Requirements FERMILAB BD/Cryogenic Department Delta-T < 4 K5 Density change / dens. LH2 @ 17 K (%) LH₂ volume contained in LH₂ absorber Density fluctuation < +/-2.5 % 2 1 P=1.2 atm 0 15 16 18 19 20 Subcool at 17 K to stay bellow boiling point -1 \checkmark

5 Tesla magnetic field \checkmark

-3

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

Heat Transfer Numerical Calculations

Temperature distribution:

Pressure distribution:

→ Influence of flow symmetry and number of active nozzles

→ Configuration with 15 inlet nozzles and 19 outlet nozzles; velocity 2 m/s at inner chamber inlet

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

> Challenge of LH_2 use to validate the feasibility of ionization cooling in LH_2 absorber (convection and forced-flow types)

> Development of the LH_2 system for the MuCool Test Area in compliance with safety codes. Implementation of a complete cryogenic refrigeration system.

 \succ CFD results permit us to address the LH₂ force flow design and permit us to understand the interdependences between the LH₂ flow characteristics.

Sept. 23 rd 2003

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

Additional slides

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area

LH₂ Absorber Design

The design of the MTA cryo-system permits us to create the Aborber Safety Review book-Ref ES&H: **5032.2: GUIDELINES FOR THE DESIGN, REVIEW AND APPROVAL OF LIQUID CRYOGENIC TARGETS**

- The Target Safety Review book shall contain all of the required documents of Chapter 5032TA, including the following:
- 1. Structural calculations on all parts of the target
- 2. Venting calculations for the target
- 3. Venting calculations for the vacuum space
- 4. Venting calculations for the secondary containment
- 5. Complete drawings of the target, vacuum system and secondary containment
- 6. Instrument and valve summary
- 7. Interlock list
- 8. Operating procedures
- 9. Emergency procedures
- 10. Operational call-in list
- 11. Material certification data on part
- 12. FMEA, what-if analysis
- 13. Flow diagram
- 14. Testing results

C. Darve

CEC'03 – The liquid Hydrogen system for the MuCool Test Area